메뉴 건너뛰기




Volumn 20, Issue 2, 2001, Pages 123-167

A new approach for spectral feature extraction and for unsupervised classification of hyperspectral data based on the Gaussian mixture model

Author keywords

Feature extraction; Gaussian mixture; Hyperspectral remote sensing; Lower confidence bound; Unsupervised classification

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); COMPUTER SIMULATION; DECISION THEORY; FEATURE EXTRACTION; LEARNING SYSTEMS; PROBABILITY;

EID: 0035342809     PISSN: 02757257     EISSN: None     Source Type: Journal    
DOI: 10.1080/02757250109532431     Document Type: Article
Times cited : (9)

References (64)
  • 5
    • 0034077443 scopus 로고    scopus 로고
    • Determination of surface reflectance from raw hyperspectral data without simultaneous ground data measurements: A case study of the GER-63 channel sensor data acquired over Naan, Israel
    • (2000) International Journal of Remote Sensing , vol.21 , Issue.10 , pp. 2053-2074
    • Ben-Dor, E.1    Levin, N.2
  • 19
    • 0001077032 scopus 로고
    • Nonparametric estimates of standard error: The jackknife, the boot-strap and other methods
    • (1981) Biometrika , vol.68 , pp. 589-599
    • Efron, B.1
  • 42
    • 0023570352 scopus 로고
    • On bootstrapping the likelihood ratio test statistics for the number of components in a normal mixture
    • (1987) Applied Statistics , vol.36 , pp. 318-324
    • McLachlan, G.J.1
  • 57


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.