메뉴 건너뛰기




Volumn 9, Issue 1, 1994, Pages 2-30

Neural networks: A review from a statistical perspective

Author keywords

Artificial intelligence; Artificial neural networks; Cluster analysis; Discriminant analysis; Gibbs distributions; Incomplete data; Nonparametric regression; Statistical pattern recognition

Indexed keywords


EID: 84972539015     PISSN: 08834237     EISSN: None     Source Type: Journal    
DOI: 10.1214/ss/1177010638     Document Type: Article
Times cited : (813)

References (206)
  • 3
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • B. N. Petrov and F. Csaki, eds., Akademia Kiedo, Budapest
    • Akaike, H. (1974). Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory (B. N. Petrov and F. Csaki, eds.) 261-281. Akademia Kiedo, Budapest.
    • (1974) Second International Symposium on Information Theory , pp. 261-281
    • Akaike, H.1
  • 5
    • 0025488578 scopus 로고
    • Mathematical foundations of neurocomputing
    • Amari, S. I. (1990). Mathematical foundations of neurocomputing. Proc. IEEE 78 1443-1463.
    • (1990) Proc. IEEE , vol.78 , pp. 1443-1463
    • Amari, S.I.1
  • 8
  • 9
    • 4244216476 scopus 로고
    • Storing infinite numbers of patterns in a spin-glass model of neural networks
    • Amit, D. J., Gutfreund, H. and Sompolinsky, H. (1985b). Storing infinite numbers of patterns in a spin-glass model of neural networks. Phys. Rev. Lett. 55 1530-1533.
    • (1985) Phys. Rev. Lett , vol.55 , pp. 1530-1533
    • Amit, D.J.1    Gutfreund, H.2    Sompolinsky, H.3
  • 14
    • 0001347323 scopus 로고
    • Complexity regularization with application to artificial neural networks
    • G. Roussas, ed, Kluwer, Dordrecht
    • Barron, A. R. (1991). Complexity regularization with application to artificial neural networks. In Nonparametric Function Estimation and Related Topics (G. Roussas, ed.) 561-576. Kluwer, Dordrecht.
    • (1991) Nonparametric Function Estimation and Related Topics , pp. 561-576
    • Barron, A.R.1
  • 16
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • Barron, A. R. (1993). Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inform. Theory 39 930-945.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 17
    • 0001325515 scopus 로고
    • Approximation and estimation bounds for artificial neural networks
    • Barron, A. R. (1994). Approximation and estimation bounds for artificial neural networks. Machine Learning 14 115-133.
    • (1994) Machine Learning , vol.14 , pp. 115-133
    • Barron, A.R.1
  • 19
    • 0343347137 scopus 로고
    • Comment on "Multivariate adaptive regression splines,"
    • J. H. Friedman
    • Barron, A. R. and Xiao, X. (1991). Comment on "Multivariate adaptive regression splines," by J. H. Friedman. Ann. Statist. 19 67-82.
    • (1991) Ann. Statist , vol.19 , pp. 67-82
    • Barron, A.R.1    Xiao, X.2
  • 21
    • 0001160588 scopus 로고
    • What size net gives valid generalization?
    • Baum, E. B. and Haussler, D. (1989). What size net gives valid generalization? Neural Computation 1 151-160.
    • (1989) Neural Computation , vol.1 , pp. 151-160
    • Baum, E.B.1    Haussler, D.2
  • 22
    • 0026835134 scopus 로고
    • Global optimization of a neural network-hidden Markov model hybrid
    • Bengio, Y., Demori, R., Flammia, G. and Kompe, R. (1992). Global optimization of a neural network-hidden Markov model hybrid. IEEE Trans. Neural Networks 3 252-258.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 252-258
    • Bengio, Y.1    Demori, R.2    Flammia, G.3    Kompe, R.4
  • 23
    • 0000103562 scopus 로고
    • Spatial statistics and Bayesian computation
    • Besag, J. and Green, P. J. (1993). Spatial statistics and Bayesian computation. J. Roy. Statist. Soc. Ser. B 55 25-37.
    • (1993) J. Roy. Statist. Soc. Ser. B , vol.55 , pp. 25-37
    • Besag, J.1    Green, P.J.2
  • 24
  • 26
    • 0026711747 scopus 로고
    • General asymmetric neural networks and structure design by genetic algorithms
    • Bornholdt, S. and Graudenz, D (1992). General asymmetric neural networks and structure design by genetic algorithms. Neural Networks 5 327-334.
    • (1992) Neural Networks , vol.5 , pp. 327-334
    • Bornholdt, S.1    Graudenz, D.2
  • 27
    • 84972516732 scopus 로고
    • How connectionist models could improve Markov models for speech recognition
    • R. E. Eckmiller, ed., North-Holland, Amsterdam
    • Bourlard, H. E. (1990). How connectionist models could improve Markov models for speech recognition. In Advanced Neural Computers (R. E. Eckmiller, ed.) 247-254. North-Holland, Amsterdam.
    • (1990) Advanced Neural Computers , pp. 247-254
    • Bourlard, H.E.1
  • 28
    • 0011916896 scopus 로고
    • Merging multilayer perceptron and hidden Markov models: Some experiments in continuous speech recognition
    • E. Gelenbe, ed., North-Holland, Amsterdam
    • Bourlard, H. E. and Morgan, N. (1991). Merging multilayer perceptron and hidden Markov models: some experiments in continuous speech recognition. In Neural Networks: Advances and Applications (E. Gelenbe, ed.) 215-239. North-Holland, Amsterdam.
    • (1991) Neural Networks: Advances and Applications , pp. 215-239
    • Bourlard, H.E.1    Morgan, N.2
  • 29
    • 0027602489 scopus 로고
    • Hinging hyperplanes for regression classification and function approximation
    • Breiman, L. (1993). Hinging hyperplanes for regression classification and function approximation. IEEE Trans. Inform. Theory 39 999-1013.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 999-1013
    • Breiman, L.1
  • 32
    • 33746644299 scopus 로고
    • Random iterative networks
    • Bresshoff, P. C. and Taylor, J. G. (1990). Random iterative networks. Phys. Rev. A 41 1126-1137.
    • (1990) Phys. Rev. A , vol.41 , pp. 1126-1137
    • Bresshoff, P.C.1    Taylor, J.G.2
  • 33
    • 0000583248 scopus 로고
    • Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition
    • F. Fougleman-Soulie and J. Herault, eds., Springer, New York
    • Bridle, J. S. (1990). Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition. In Neuro-computing: Algorithms, Architectures and Applications (F. Fougleman-Soulie and J. Herault, eds.) 227-236. Springer, New York.
    • (1990) Neuro-computing: Algorithms, Architectures and Applications , pp. 227-236
    • Bridle, J.S.1
  • 34
    • 0009420138 scopus 로고
    • Neural networks or hidden Markov models for automatic speech recognition: Is there a choice?
    • P. LaFace, ed., Springer, New York
    • Bridle, J. S. (1992). Neural networks or hidden Markov models for automatic speech recognition: is there a choice? In Speech Recognition and Understanding: Recent Advances, Trends and Application (P. LaFace, ed.) 225-236. Springer, New York.
    • (1992) Speech Recognition and Understanding: Recent Advances, Trends and Application , pp. 225-236
    • Bridle, J.S.1
  • 35
    • 0000621802 scopus 로고
    • Multivariate functional interpolation and adaptive networks
    • Broomhead, D. S. and Lowe, D. (1988). Multivariate functional interpolation and adaptive networks. Complex Systems 2 321-355.
    • (1988) Complex Systems , vol.2 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 38
    • 0026898265 scopus 로고
    • Alternating minimization and Boltzmann machine learning
    • Byrne, W. (1992) Alternating minimization and Boltzmann machine learning. IEEE Trans. Neural Networks 3 612-620.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 612-620
    • Byrne, W.1
  • 40
    • 0023981451 scopus 로고
    • The ART of adaptive pattern recognition by a self-organizing neural network
    • Carpenter, G. A. and Grossberg, S. (1988). The ART of adaptive pattern recognition by a self-organizing neural network. Computer 21 77-88.
    • (1988) Computer , vol.21 , pp. 77-88
    • Carpenter, G.A.1    Grossberg, S.2
  • 41
    • 45149144372 scopus 로고
    • Nonlinear prediction of chaotic time series
    • Casdagli, M. (1989). Nonlinear prediction of chaotic time series. Phys. D 35 335-356.
    • (1989) Phys. D , vol.35 , pp. 335-356
    • Casdagli, M.1
  • 42
    • 84972528186 scopus 로고
    • A small selection of neural network methods and their statistical connections
    • K. V. Mardia, ed, Carfax, Abingdon, lb appear
    • Cheng, B. and Titterington, D. M. (1994). A small selection of neural network methods and their statistical connections. In Statistics and Images II (K. V. Mardia, ed.) Carfax, Abingdon, lb appear.
    • (1994) Statistics and Images II
    • Cheng, B.1    Titterington, D.M.2
  • 44
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions
    • Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions. Numer. Math. 31 377-403.
    • (1979) Numer. Math , vol.31 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 45
    • 0001560954 scopus 로고
    • Information geometry and alternating minimization procedures
    • Oldenbourg, Munich
    • Csiszar, I. and Tusnady, G. (1984). Information geometry and alternating minimization procedures. In Statist. Decisions Suppl. 1 205-237. Oldenbourg, Munich.
    • (1984) Statist. Decisions , vol.1 , pp. 205-237
    • Csiszar, I.1    Tusnady, G.2
  • 46
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Math. Control Signals System 2 303-314.
    • (1989) Math. Control Signals System , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 47
    • 84972496251 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm (with discussion)
    • Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. Roy. Statist. Soc. Ser. B 39 1-38.
    • (1977) J. Roy. Statist. Soc. Ser. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 54
    • 0001214703 scopus 로고
    • On asymptotic normality in stochastic approximation
    • Fabian, V. (1968). On asymptotic normality in stochastic approximation. Ann. Math. Statist. 39 1327-1332.
    • (1968) Ann. Math. Statist , vol.39 , pp. 1327-1332
    • Fabian, V.1
  • 55
    • 0001929973 scopus 로고
    • Predicting chaotic dynamics
    • Kelso, J. A. S., Mandell, A. J. and Shlesinger, M. F., eds., World Scientific, Singapore
    • Farmer, J. D. and Sidorowich, J. J. (1989). Predicting chaotic dynamics. In Dynamic Patterns in Complex Systems (Kelso, J. A. S., Mandell, A. J. and Shlesinger, M. F., eds.) 265-292. World Scientific, Singapore.
    • (1989) Dynamic Patterns in Complex Systems , pp. 265-292
    • Farmer, J.D.1    Sidorowich, J.J.2
  • 56
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Ann. Eugenics 7 179-184.
    • (1936) Ann. Eugenics , vol.7 , pp. 179-184
    • Fisher, R.A.1
  • 57
    • 84887916087 scopus 로고
    • Regularized discriminant analysis
    • Friedman, J. H. (1989). Regularized discriminant analysis. J. Amer. Statist. Assoc. 84 165-188.
    • (1989) J. Amer. Statist. Assoc , vol.84 , pp. 165-188
    • Friedman, J.H.1
  • 58
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines (with discussion)
    • Friedman, J. H. (1991). Multivariate adaptive regression splines (with discussion). Ann. Statist. 19 1-141.
    • (1991) Ann. Statist , vol.19 , pp. 1-141
    • Friedman, J.H.1
  • 59
    • 0024607448 scopus 로고
    • Flexible parsimonious smoothing and additive modeling (with discussion)
    • Friedman, J. H. and Silverman, B. W. (1989). Flexible parsimonious smoothing and additive modeling (with discussion). Technometrics 31 3-39.
    • (1989) Technometrics , vol.31 , pp. 3-39
    • Friedman, J.H.1    Silverman, B.W.2
  • 61
    • 0026836060 scopus 로고
    • Rotation invariant neural pattern recognition systems with application to coin recognition
    • Fukumi, M., Omatu, S., Takeda, F. and Kosaka, T. (1992). Rotation invariant neural pattern recognition systems with application to coin recognition. IEEE Trans. Neural Networks 3 272-279.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 272-279
    • Fukumi, M.1    Omatu, S.2    Takeda, F.3    Kosaka, T.4
  • 62
    • 84912867944 scopus 로고
    • Stochastic approximation and multilayer perceptrons: The gain backpropagation algorithm
    • Gawthrop, R J. and Sbarbaro, D. G. (1990). Stochastic approximation and multilayer perceptrons: the gain backpropagation algorithm. Complex Systems 4 51-74.
    • (1990) Complex Systems , vol.4 , pp. 51-74
    • Gawthrop, R.J.1    Sbarbaro, D.G.2
  • 63
    • 0002761101 scopus 로고
    • Theory of the random neural network model
    • North-Holland, Amsterdam
    • Gelenbe, E. (1991a). Theory of the random neural network model. In Neural Networks: Advances and Applications 1-20. North-Holland, Amsterdam.
    • (1991) Neural Networks: Advances and Applications , pp. 1-20
    • Gelenbe, E.1
  • 67
    • 0020098639 scopus 로고
    • On the structure of vector quantizers
    • Gersho, A. (1982). On the structure of vector quantizers. IEEE Trans. Inform. Theory 28 157-166.
    • (1982) IEEE Trans. Inform. Theory , vol.28 , pp. 157-166
    • Gersho, A.1
  • 68
    • 0024991997 scopus 로고
    • Networks and the best approximation property
    • Girosi, F. and Poggio, T. (1990). Networks and the best approximation property. Biol. Cybernet. 63 169-176.
    • (1990) Biol. Cybernet , vol.63 , pp. 169-176
    • Girosi, F.1    Poggio, T.2
  • 70
    • 0004241258 scopus 로고
    • Chapman and Hall, London
    • Gordon, A. (1981). Classification. Chapman and Hall, London.
    • (1981) Classification
    • Gordon, A.1
  • 75
    • 0000637050 scopus 로고
    • Asymptotic distributions for clustering criteria
    • Hartigan, J. A. (1978). Asymptotic distributions for clustering criteria. Ann. Statist. 6 117-131.
    • (1978) Ann. Statist. , vol.6 , pp. 117-131
    • Hartigan, J.A.1
  • 83
    • 0024732792 scopus 로고
    • Connectionist learning procedures
    • Hinton, G. E. (1989). Connectionist learning procedures. Artif. Intell. 40 185-234.
    • (1989) Artif. Intell , vol.40 , pp. 185-234
    • Hinton, G.E.1
  • 84
    • 0026980087 scopus 로고
    • How neural networks learn from experience
    • Hinton, G. E. (1992). How neural networks learn from experience. Scientific American 267 104-109.
    • (1992) Scientific American , vol.267 , pp. 104-109
    • Hinton, G.E.1
  • 86
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci, U.S.A. 79 2554-2558.
    • (1982) Proc. Nat. Acad. Sci, U.S.A , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 87
    • 0004469897 scopus 로고
    • Neurons with graded response have collective computational properties like those of two-state neurons
    • Hopfield, J. J. (1984). Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Nat. Acad. Sci. U.S.A. 81 3088-3092.
    • (1984) Proc. Nat. Acad. Sci. U.S.A , vol.81 , pp. 3088-3092
    • Hopfield, J.J.1
  • 88
    • 0021835689 scopus 로고
    • Neural computation of decisions in optimization problems
    • Hopfield, J. J. and Tank, D. W. (1985). Neural computation of decisions in optimization problems. Biol. Cybernet. 52 141-152.
    • (1985) Biol. Cybernet , vol.52 , pp. 141-152
    • Hopfield, J.J.1    Tank, D.W.2
  • 89
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K, Stinchcombe, M. and White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks 2 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 92
    • 0000796112 scopus 로고
    • A simple lemma on greedy approximation in Hilbert Space and convergence rates for projection pursuit regression and neural network training
    • Jones, L. K. (1992). A simple lemma on greedy approximation in Hilbert Space and convergence rates for projection pursuit regression and neural network training. Ann. Statist. 20 608-613.
    • (1992) Ann. Statist , vol.20 , pp. 608-613
    • Jones, L.K.1
  • 93
    • 38249004276 scopus 로고
    • On patterns, categories and alternate realities
    • Kanal, L. (1993). On patterns, categories and alternate realities. Pattern Recognition Letters 14 241-255.
    • (1993) Pattern Recognition Letters , vol.14 , pp. 241-255
    • Kanal, L.1
  • 95
    • 0020098297 scopus 로고
    • Exponential rate of convergence for Lloyd’s method 1
    • Kieffer, J. C. (1982). Exponential rate of convergence for Lloyd’s method 1. IEEE Trans. Inform. Theory 28 205-210.
    • (1982) IEEE Trans. Inform. Theory , vol.28 , pp. 205-210
    • Kieffer, J.C.1
  • 96
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biol. Cybernet. 43 59-69.
    • (1982) Biol. Cybernet , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 98
    • 84972508228 scopus 로고
    • Internal representations and associative memory
    • R. E. Eckmiller, G. Hartman and G. Hauske, eds., North-Holland, Amsterdam
    • Kohonen, T. (1990) Internal representations and associative memory. In Parallel Processing in Neural Systems and Computers (R. E. Eckmiller, G. Hartman and G. Hauske, eds.) 177-182. North-Holland, Amsterdam.
    • (1990) Parallel Processing in Neural Systems and Computers , pp. 177-182
    • Kohonen, T.1
  • 100
    • 0023829082 scopus 로고
    • Convergence results in an associative memory model
    • Komlos, J. and Paturi, R. (1988). Convergence results in an associative memory model. Neural Networks 1 239-250.
    • (1988) Neural Networks , vol.1 , pp. 239-250
    • Komlos, J.1    Paturi, R.2
  • 101
    • 33749402426 scopus 로고
    • The impact of the learning-set size in handwritten-digit recognition
    • T. Kohonen, K. Makisara, O. Simula and J. Kangas, eds, North-Holland, Amsterdam
    • Kressel, U. W-G. (1991). The impact of the learning-set size in handwritten-digit recognition. In Artificial Neural Networks (T. Kohonen, K. Makisara, O. Simula and J. Kangas, eds.) 2 1685-1690. North-Holland, Amsterdam.
    • (1991) Artificial Neural Networks , vol.2 , pp. 1685-1690
    • Kressel, U.W.-G.1
  • 102
    • 6244243314 scopus 로고
    • A network for discriminant analysis
    • T. Kohonen, K. Makisara, O. Simula and J. Kangas, eds, North Holland, Amsterdam
    • Kuhnel, H. and Traven, P. (1991). A network for discriminant analysis. In Artificial Neural Networks (T. Kohonen, K. Makisara, O. Simula and J. Kangas, eds.) 2 1053-1056. North Holland, Amsterdam.
    • (1991) Artificial Neural Networks , vol.2 , pp. 1053-1056
    • Kuhnel, H.1    Traven, P.2
  • 103
    • 84879799188 scopus 로고
    • Estimation of error rates in discriminant analysis
    • Lachenbruch, P.A. and Mickey, M.R. (1968). Estimation of error rates in discriminant analysis. Technometrics 10 1-10.
    • (1968) Technometrics , vol.10 , pp. 1-10
    • Lachenbruch, P.A.1    Mickey, M.R.2
  • 105
    • 0001006209 scopus 로고
    • Local computations with probabilities in graphical structures and their applications to expert systems (with discussion)
    • Lauritzen, S. L. and Spiegelhalter, D. J. (1988). Local computations with probabilities in graphical structures and their applications to expert systems (with discussion). J. Roy. Statist. Soc. Ser. B 50 157-224.
    • (1988) J. Roy. Statist. Soc. Ser. B , vol.50 , pp. 157-224
    • Lauritzen, S.L.1    Spiegelhalter, D.J.2
  • 108
    • 0025508916 scopus 로고
    • A statistical approach to learning and generalization in layered neural networks
    • Levin, E., Tishby, N. and Solla, S. A. (1990). A statistical approach to learning and generalization in layered neural networks. Proc. IEEE 78 1568-1574.
    • (1990) Proc. IEEE , vol.78 , pp. 1568-1574
    • Levin, E.1    Tishby, N.2    Solla, S.A.3
  • 110
    • 0001462696 scopus 로고
    • p, C, cross-validation and generalized cross-validation: Discrete index set
    • p, C, cross-validation and generalized cross-validation: Discrete index set. Ann. Statist. 15 958-975.
    • (1987) Ann. Statist , vol.15 , pp. 958-975
    • Li, K.-C.1
  • 112
    • 0000112578 scopus 로고
    • Residual diagnostics for mixture models
    • Lindsay, B. G. and Roeder, K (1992). Residual diagnostics for mixture models. J. Amer. Statist. Assoc. 87 785-794.
    • (1992) J. Amer. Statist. Assoc. , vol.87 , pp. 785-794
    • Lindsay, B.G.1    Roeder, K.2
  • 114
    • 0015951617 scopus 로고
    • The existence of persistent states in the brain
    • Little, W. A. (1974). The existence of persistent states in the brain. Math. Biosci. 19 101-120.
    • (1974) Math. Biosci , vol.19 , pp. 101-120
    • Little, W.A.1
  • 118
    • 0000478224 scopus 로고
    • Exploiting prior knowledge in network optimization: An illustration from medical prognosis
    • Lowe, D. and Webb, A. R. (1990). Exploiting prior knowledge in network optimization: an illustration from medical prognosis. Network 1 299-323.
    • (1990) Network , vol.1 , pp. 299-323
    • Lowe, D.1    Webb, A.R.2
  • 119
  • 121
    • 0026185546 scopus 로고
    • Code vector density in topographic mappings: Scalar case
    • Luttrell, S. P. (1991). Code vector density in topographic mappings: scalar case. IEEE Trans. Neural Networks 2 427-436.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 427-436
    • Luttrell, S.P.1
  • 123
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • Mackay, D. J. C. (1992a). Bayesian interpolation. Neural Computation 4 415-447.
    • (1992) Neural Computation , vol.4 , pp. 415-447
    • Mackay, D.J.C.1
  • 124
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • Mackay, D. J. C. (1992b). A practical Bayesian framework for backpropagation networks. Neural Computation 4 448-472.
    • (1992) Neural Computation , vol.4 , pp. 448-472
    • Mackay, D.J.C.1
  • 127
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • Univ. California Press, Berkeley
    • Macqueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. In Proc. Fifth Berkeley Symp. Math. Statist. Probab. 281-297. Univ. California Press, Berkeley.
    • (1967) Proc. Fifth Berkeley Symp. Math. Statist. Probab , pp. 281-297
    • Macqueen, J.B.1
  • 130
    • 51249194645 scopus 로고
    • A logical calculus of ideas immanent in nervous activity
    • Mcculloch, W. S. and Pitts, W. (1943). A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5 115-133.
    • (1943) Bulletin of Mathematical Biophysics , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 134
    • 0000902690 scopus 로고
    • The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems
    • J. E. Moody, S. J. Hanson and R. P. Lippmann, eds., Morgan Kaufmann, San Mateo, CA
    • Moody, J. E. (1992). The effective number of parameters: an analysis of generalization and regularization in nonlinear learning systems. In Advances in Neural Information Processing Systems 4 (J. E. Moody, S. J. Hanson and R. P. Lippmann, eds.) 847-854. Morgan Kaufmann, San Mateo, CA.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 847-854
    • Moody, J.E.1
  • 135
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • Moody, J. E. and Darken, C. (1989). Fast learning in networks of locally-tuned processing units. Neural Computation 1281-294.
    • (1989) Neural Computation , pp. 1281-1294
    • Moody, J.E.1    Darken, C.2
  • 136
    • 0026895707 scopus 로고
    • Convergence and divergence in neural networks: Processing of chaos and biological analogy
    • Mpitsos, G. J. and Burton, R. M. (1992). Convergence and divergence in neural networks: processing of chaos and biological analogy. Neural Networks 5 605-625.
    • (1992) Neural Networks , vol.5 , pp. 605-625
    • Mpitsos, G.J.1    Burton, R.M.2
  • 139
    • 44049116681 scopus 로고
    • Connectionist learning of belief networks
    • Neal, R. M. (1992b). Connectionist learning of belief networks. Artif. Intell. 56 71-113.
    • (1992) Artif. Intell , vol.56 , pp. 71-113
    • Neal, R.M.1
  • 140
    • 0037591475 scopus 로고
    • Bayesian learning via stochastic dynamics
    • C. L. Giles, S. J. Hanson and J. D. Cowan, eds, Morgan Kaufmann, San Mateo, CA
    • Neal, R. M. (1993). Bayesian learning via stochastic dynamics. In Advances in Neural Information Processing Systems 5 (C. L. Giles, S. J. Hanson and J. D. Cowan, eds.) 475-482. Morgan Kaufmann, San Mateo, CA.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 475-482
    • Neal, R.M.1
  • 141
    • 0023869164 scopus 로고
    • Memory capacity in neural network models: Rigorous lower bounds
    • Newman, C. M. (1988). Memory capacity in neural network models: rigorous lower bounds. Neural Networks 1 223-238.
    • (1988) Neural Networks , vol.1 , pp. 223-238
    • Newman, C.M.1
  • 143
    • 0020464111 scopus 로고
    • A simplified neuron model as a principal component analyzer
    • Oja, E. (1982). A simplified neuron model as a principal component analyzer. J. Math. Biol. 15 267-273.
    • (1982) J. Math. Biol , vol.15 , pp. 267-273
    • Oja, E.1
  • 144
    • 84972517864 scopus 로고
    • Panel on Discriminant Analysis, Classification and Clustering (1989). Discriminant Analysis and Clustering. Statist. Sci. 4 34-69.
    • (1989) Statist. Sci. , vol.4 , pp. 34-69
  • 145
    • 0004225001 scopus 로고
    • Technical Report 47, Center for Computational Research in Economics and Management Science, MIT
    • Parker, D. B. (1985). Learning logic. Technical Report 47, Center for Computational Research in Economics and Management Science, MIT.
    • (1985) Learning logic
    • Parker, D.B.1
  • 147
    • 0026835689 scopus 로고
    • Translation, rotation and scale invariant pattern recognition by high-order neural networks and moment classifiers
    • Perantonis, S. and Lisboa., P. J. G. (1992). Translation, rotation and scale invariant pattern recognition by high-order neural networks and moment classifiers. IEEE Trans. Neural Networks 3 241-251.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 241-251
    • Perantonis, S.1    Lisboa, P.J.G.2
  • 148
    • 84972529190 scopus 로고
    • A parallel vision machine that learns
    • R.M. J. Cotterill, ed, Cambridge Univ. Press
    • Poggio, T. (1990). A parallel vision machine that learns. In Models of Brain Functions (R.M. J. Cotterill, ed.) 3-34, Cambridge Univ. Press.
    • (1990) Models of Brain Functions , pp. 3-34
    • Poggio, T.1
  • 149
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio, T. and Girosi, F. (1990). Networks for approximation and learning. Proc. IEEE 78 1481-1497.
    • (1990) Proc. IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 150
    • 0000963889 scopus 로고
    • Strong consistency of /£-means clustering
    • Pollard, D. (1981). Strong consistency of /£-means clustering. Ann. Statist. 9 135-140.
    • (1981) Ann. Statist , vol.9 , pp. 135-140
    • Pollard, D.1
  • 151
    • 0020101636 scopus 로고
    • Quantization and the method of HT-means
    • Pollard, D. (1982a). Quantization and the method of HT-means. IEEE Trans. Inform. Theory 28 199-205.
    • (1982) IEEE Trans. Inform. Theory , vol.28 , pp. 199-205
    • Pollard, D.1
  • 152
    • 0000963885 scopus 로고
    • A central limit theorem for K-means clustering
    • Pollard, D. (1982b). A central limit theorem for K-means clustering. Ann. Statist. 10 119-205.
    • (1982) Ann. Statist , vol.10 , pp. 119-205
    • Pollard, D.1
  • 153
    • 0001857179 scopus 로고
    • Learning efficient classification procedures and their application to chess end-games
    • R.S. Michalski, J. G. Carbonelli and T. M. Mitchell, eds., Tioga, Palo Alto, CA
    • Quinlan, J. R. (1983). Learning efficient classification procedures and their application to chess end-games. In Machine Learning (R.S. Michalski, J. G. Carbonelli and T. M. Mitchell, eds.) 463-482. Tioga, Palo Alto, CA.
    • (1983) Machine Learning , pp. 463-482
    • Quinlan, J.R.1
  • 154
    • 0001595997 scopus 로고
    • Neural network classifiers estimate Bayesian a posteriori probabilities
    • Richard, M. D. and Lippmann, R. P. (1992). Neural network classifiers estimate Bayesian a posteriori probabilities. Neural Computation 3 461-483.
    • (1992) Neural Computation , vol.3 , pp. 461-483
    • Richard, M.D.1    Lippmann, R.P.2
  • 155
    • 0002983776 scopus 로고
    • Statistical aspects of neural networks
    • O. E. Bamdorff-Nielsen, J. L. Jensen and W. S. Kendall, eds., Chapman and Hall, London
    • Ripley, B. D. (1993a). Statistical aspects of neural networks. In Networks and Chaos-Statistical and Probabilistic Aspects (O. E. Bamdorff-Nielsen, J. L. Jensen and W. S. Kendall, eds.) 40-123. Chapman and Hall, London.
    • (1993) Networks and Chaos-Statistical and Probabilistic Aspects , pp. 40-123
    • Ripley, B.D.1
  • 156
    • 0000696616 scopus 로고
    • Neural networks and related methods for classification (with discussion)
    • Td appear
    • Ripley, B. D. (1994a). Neural networks and related methods for classification (with discussion). J. Roy. Statist. Soc. Ser. B 56. Td appear.
    • (1994) J. Roy. Statist. Soc. Ser. B , pp. 56
    • Ripley, B.D.1
  • 158
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • Robbins, H. and Monro, S. (1951). A stochastic approximation method. Ann. Math. Statist. 22 400-407.
    • (1951) Ann. Math. Statist , vol.22 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 159
    • 0002961288 scopus 로고
    • On the stationary state of Kohonen’s self-organizing sensory mapping
    • Ritter, H. and Schulten, K (1986). On the stationary state of Kohonen’s self-organizing sensory mapping. Biol. Cybernet. 54 99-106.
    • (1986) Biol. Cybernet , vol.54 , pp. 99-106
    • Ritter, H.1    Schulten, K.2
  • 162
    • 0022471098 scopus 로고
    • Learning internal representation by back-propagating errors
    • Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986a). Learning internal representation by back-propagating errors. Nature 323 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 165
    • 0002656190 scopus 로고
    • Feature discovery by competitive learning
    • Rumelhart, D. E. and Zipser, D. (1985). Feature discovery by competitive learning. Cognitive Science 9 75-112.
    • (1985) Cognitive Science , vol.9 , pp. 75-112
    • Rumelhart, D.E.1    Zipser, D.2
  • 166
    • 0024883243 scopus 로고
    • Optimal unsupervized learning in a singlelayer linear feedforward neural network
    • Sanger, T. D. (1989). Optimal unsupervized learning in a singlelayer linear feedforward neural network. Neural Networks 2 459-473.
    • (1989) Neural Networks , vol.2 , pp. 459-473
    • Sanger, T.D.1
  • 167
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwartz, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461-464.
    • (1978) Ann. Statist , vol.6 , pp. 461-464
    • Schwartz, G.1
  • 169
    • 0000383868 scopus 로고
    • Parallel networks that learn to pronounce English text
    • Sejnowski, T. J. and Rosenberg, C. R. (1987). Parallel networks that learn to pronounce English text. Complex Systems 1 145-168.
    • (1987) Complex Systems , vol.1 , pp. 145-168
    • Sejnowski, T.J.1    Rosenberg, C.R.2
  • 171
    • 77956887130 scopus 로고
    • An optimal selection of regression variables
    • Shibata, R. (1981). An optimal selection of regression variables. Biometrika 68 45-54.
    • (1981) Biometrika , vol.68 , pp. 45-54
    • Shibata, R.1
  • 172
    • 0001995852 scopus 로고
    • Some aspects of the spline smoothing approach to nonparametric regression curve estimation (with discussion)
    • Silverman, B. W. (1985). Some aspects of the spline smoothing approach to nonparametric regression curve estimation (with discussion). J. Roy. Statist. Soc. Ser. B 47 1-52.
    • (1985) J. Roy. Statist. Soc. Ser. B , vol.47 , pp. 1-52
    • Silverman, B.W.1
  • 175
    • 0003053548 scopus 로고
    • Bayesian computation by the Gibbs sampler andxelated Markov chain Monte Carlo methods
    • Smith, A. F. M. and Roberts, G. O. (1993). Bayesian computation by the Gibbs sampler andxelated Markov chain Monte Carlo methods. J. Roy. Statist. Soc. Ser. B 55 3-23.
    • (1993) J. Roy. Statist. Soc. Ser. B , vol.55 , pp. 3-23
    • Smith, A.F.M.1    Roberts, G.O.2
  • 176
    • 0000329993 scopus 로고
    • Information processing in dynamical systems: Foundations of harmony theory
    • D. E. Rumelhart, J. L. McClelland and the PDP Research Group, eds., MIT Press
    • Smolensky, P. (1986). Information processing in dynamical systems: foundations of harmony theory. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition (D. E. Rumelhart, J. L. McClelland and the PDP Research Group, eds.) 194-281. MIT Press.
    • (1986) In Parallel Distributed Processing: Explorations in the Microstructure of Cognition , pp. 194-281
    • Smolensky, P.1
  • 177
    • 0000007140 scopus 로고
    • Recursive Bayesian estimation using Gaussian sums
    • Sorenson, H. W. and Alspach, D. L. (1971). Recursive Bayesian estimation using Gaussian sums. Automatica 7 465-479.
    • (1971) Automatica , vol.7 , pp. 465-479
    • Sorenson, H.W.1    Alspach, D.L.2
  • 178
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht, D. F. (1990). Probabilistic neural networks. Neural Networks 3 109-118.
    • (1990) Neural Networks , vol.3 , pp. 109-118
    • Specht, D.F.1
  • 179
    • 0026254768 scopus 로고
    • A general regression neural network
    • Specht, D. F. (1991). A general regression neural network. IEEE Trans. Neural Networks 2 568-576.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 568-576
    • Specht, D.F.1
  • 180
    • 84986980101 scopus 로고
    • Sequential updating of conditional probabilities on directed graphical structures
    • Spiegelhalter, D. J. and Lauritzen, S. L. (1990). Sequential updating of conditional probabilities on directed graphical structures. Networks 20 579-605.
    • (1990) Networks , vol.20 , pp. 579-605
    • Spiegelhalter, D.J.1    Lauritzen, S.L.2
  • 181
    • 0000796382 scopus 로고
    • Exploiting neurons with localized receptive fields to learn chaos
    • Stokbro, K., Umberger, D. K. and Hertz, J. A. (1990). Exploiting neurons with localized receptive fields to learn chaos. Complex Systems 4 603-622.
    • (1990) Complex Systems , vol.4 , pp. 603-622
    • Stokbro, K.1    Umberger, D.K.2    Hertz, J.A.3
  • 182
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions (with discussion)
    • Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions (with discussion). J. Roy. Statist. Soc. Ser. B 36 111-147.
    • (1974) J. Roy. Statist. Soc. Ser. B , vol.36 , pp. 111-147
    • Stone, M.1
  • 184
    • 0010536804 scopus 로고
    • Comments on "Application of the conditional population-mixture model to image segmentation"
    • S. C. Sclove
    • Titterington, D. M. (1984). Comments on "Application of the conditional population-mixture model to image segmentation" by S. C. Sclove. IEEE Transactions on Pattern Analysis and Machine Intelligence 6 656-658.
    • (1984) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.6 , pp. 656-658
    • Titterington, D.M.1
  • 185
    • 0001105923 scopus 로고
    • Common structure of smoothing techniques in statistics
    • Titterington, D. M. (1985). Common structure of smoothing techniques in statistics. Internat. Statist. Rev. 53 141-170.
    • (1985) Internat. Statist. Rev , vol.53 , pp. 141-170
    • Titterington, D.M.1
  • 186
    • 0001431082 scopus 로고
    • Some recent research in the analysis of mixture distributions
    • Titterington, D. M. (1990). Some recent research in the analysis of mixture distributions. Statistics 21 619-641.
    • (1990) Statistics , vol.21 , pp. 619-641
    • Titterington, D.M.1
  • 189
    • 0026151470 scopus 로고
    • A neural network approach to statistical pattern classification by "semiparametric" estimation of probability density functions
    • Traven, H. G. C. (1991). A neural network approach to statistical pattern classification by "semiparametric" estimation of probability density functions. IEEE Trans. Neural Networks 2 366-377.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 366-377
    • Traven, H.G.C.1
  • 198
    • 0012195187 scopus 로고
    • Some asymptotic results for learning in single hidden layer feedforward networks
    • White, H. (1989). Some asymptotic results for learning in single hidden layer feedforward networks. J. Amer. Statist. Assoc. 84 1008-1013.
    • (1989) J. Amer. Statist. Assoc , vol.84 , pp. 1008-1013
    • White, H.1
  • 199
    • 0025635525 scopus 로고
    • Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings
    • White, H. (1990) Connectionist nonparametric regression: multilayer feedforward networks can learn arbitrary mappings. Neural Networks 3 535-549.
    • (1990) Neural Networks , vol.3 , pp. 535-549
    • White, H.1
  • 202
    • 0008359309 scopus 로고
    • Neural nets and implicit inference
    • Whittle, P. (1991). Neural nets and implicit inference. Ann. Appl. Probab. 1 173-188.
    • (1991) Ann. Appl. Probab , vol.1 , pp. 173-188
    • Whittle, P.1
  • 204
    • 0017166860 scopus 로고
    • How patterned neural connections can be set up by self-organization
    • Willshaw, D. J. and Von Der Malsburg, C. (1976). How patterned neural connections can be set up by self-organization. Proc. Roy. Soc. London Ser. B 194 431-445.
    • (1976) Proc. Roy. Soc. London Ser. B , vol.194 , pp. 431-445
    • Willshaw, D.J.1    Von Der Malsburg, C.2
  • 205
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert, D. H. (1992). Stacked generalization. Neural Networks 5 241-259.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.