-
1
-
-
0001346187
-
-
E. D. Goldberg, Ed. Wiley-Interscience, New York
-
R. M. Garrels and E. A. Perry, in The Sea, E. D. Goldberg, Ed. (Wiley-Interscience, New York, 1974), pp. 303-316.
-
(1974)
The Sea
, pp. 303-316
-
-
Garrels, R.M.1
Perry, E.A.2
-
2
-
-
0000935533
-
-
S. Bengtson, Ed. Columbia Univ. Press, New York
-
H. D. Holland, in Early Life on Earth, S. Bengtson, Ed. (Columbia Univ. Press, New York, 1995), pp. 237-244; Geochem. News 100, 20 (1999).
-
(1995)
Early Life on Earth
, pp. 237-244
-
-
Holland, H.D.1
-
3
-
-
0039103925
-
-
H. D. Holland, in Early Life on Earth, S. Bengtson, Ed. (Columbia Univ. Press, New York, 1995), pp. 237- 244; Geochem. News 100, 20 (1999).
-
(1999)
Geochem. News
, vol.100
, pp. 20
-
-
-
4
-
-
0027922474
-
-
H. Ohmoto, T. Kakegawa, D. R. Lowe, Science 262, 555 (1993); H. Ohmoto, Geochem. News 93, 12 (1997).
-
(1993)
Science
, vol.262
, pp. 555
-
-
Ohmoto, H.1
Kakegawa, T.2
Lowe, D.R.3
-
5
-
-
0027922474
-
-
H. Ohmoto, T. Kakegawa, D. R. Lowe, Science 262, 555 (1993); H. Ohmoto, Geochem. News 93, 12 (1997).
-
(1997)
Geochem. News
, vol.93
, pp. 12
-
-
Ohmoto, H.1
-
6
-
-
0001170506
-
-
L. V. Berkner and L. C. Marshall, J. Atmos. Res. 22, 225 (1965); A. H. Knoll, in Origin and Early Evolution to the Metazoa, J. H. Lipps and D. W. Signor, Eds. (Plenum, New York, 1992), pp. 53-84; D. E. Canfield and A. Teske, Nature 382, 127 (1996).
-
(1965)
J. Atmos. Res.
, vol.22
, pp. 225
-
-
Berkner, L.V.1
Marshall, L.C.2
-
7
-
-
0003093579
-
-
J. H. Lipps and D. W. Signor, Eds. Plenum, New York
-
L. V. Berkner and L. C. Marshall, J. Atmos. Res. 22, 225 (1965); A. H. Knoll, in Origin and Early Evolution to the Metazoa, J. H. Lipps and D. W. Signor, Eds. (Plenum, New York, 1992), pp. 53-84; D. E. Canfield and A. Teske, Nature 382, 127 (1996).
-
(1992)
Origin and Early Evolution to the Metazoa
, pp. 53-84
-
-
Knoll, A.H.1
-
8
-
-
0029663540
-
-
L. V. Berkner and L. C. Marshall, J. Atmos. Res. 22, 225 (1965); A. H. Knoll, in Origin and Early Evolution to the Metazoa, J. H. Lipps and D. W. Signor, Eds. (Plenum, New York, 1992), pp. 53-84; D. E. Canfield and A. Teske, Nature 382, 127 (1996).
-
(1996)
Nature
, vol.382
, pp. 127
-
-
Canfield, D.E.1
Teske, A.2
-
9
-
-
84874954159
-
-
2) weathering to sulfate can be approximated from the kinetics of the reaction between pyrite and oxygen [M. A. Williamson and J. D. Rimstidt, Geochim. Cosmochim. Acta 58, 5443 (1994)]. About 5000 years are required to oxidize a 100-μm pyrite grain in an aqueous solution of low ionic strength, pH of 5 (the calculation is not very sensitive to pH), 25°C, and with 1 μM of oxygen. Soils typically range from 3000 to 100,000 years in age [W. H. Schlesinger, Nature 348, 232 (1990); P. W. Birklund, Pedology, Weathering, and Geomorphological Research (Oxford Univ. Press, Oxford, 1974)]. Therefore, with 1 μM oxygen, sufficient time should be available during weathering for substantial pyrite oxidation, leading to the accumulation of sulfate into the oceans. An oxygen concentration of 1 μM is about 0.4% of the present-day, air-saturated concentration of 260 μM at 25°C in fresh water.
-
(1999)
Geology
, vol.27
, pp. 115
-
-
Rasmussen, B.1
Buick, R.2
-
10
-
-
0028555637
-
-
2) weathering to sulfate can be approximated from the kinetics of the reaction between pyrite and oxygen [M. A. Williamson and J. D. Rimstidt, Geochim. Cosmochim. Acta 58, 5443 (1994)]. About 5000 years are required to oxidize a 100-μm pyrite grain in an aqueous solution of low ionic strength, pH of 5 (the calculation is not very sensitive to pH), 25°C, and with 1 μM of oxygen. Soils typically range from 3000 to 100,000 years in age [W. H. Schlesinger, Nature 348, 232 (1990); P. W. Birklund, Pedology, Weathering, and Geomorphological Research (Oxford Univ. Press, Oxford, 1974)]. Therefore, with 1 μM oxygen, sufficient time should be available during weathering for substantial pyrite oxidation, leading to the accumulation of sulfate into the oceans. An oxygen concentration of 1 μM is about 0.4% of the present-day, air-saturated concentration of 260 μM at 25°C in fresh water.
-
(1994)
Geochim. Cosmochim. Acta
, vol.58
, pp. 5443
-
-
Williamson, M.A.1
Rimstidt, J.D.2
-
11
-
-
0025584804
-
-
2) weathering to sulfate can be approximated from the kinetics of the reaction between pyrite and oxygen [M. A. Williamson and J. D. Rimstidt, Geochim. Cosmochim. Acta 58, 5443 (1994)]. About 5000 years are required to oxidize a 100-μm pyrite grain in an aqueous solution of low ionic strength, pH of 5 (the calculation is not very sensitive to pH), 25°C, and with 1 μM of oxygen. Soils typically range from 3000 to 100,000 years in age [W. H. Schlesinger, Nature 348, 232 (1990); P. W. Birklund, Pedology, Weathering, and Geomorphological Research (Oxford Univ. Press, Oxford, 1974)]. Therefore, with 1 μM oxygen, sufficient time should be available during weathering for substantial pyrite oxidation, leading to the accumulation of sulfate into the oceans. An oxygen concentration of 1 μM is about 0.4% of the present-day, air-saturated concentration of 260 μM at 25°C in fresh water.
-
(1990)
Nature
, vol.348
, pp. 232
-
-
Schlesinger, W.H.1
-
12
-
-
0004046496
-
-
Oxford Univ. Press, Oxford
-
2) weathering to sulfate can be approximated from the kinetics of the reaction between pyrite and oxygen [M. A. Williamson and J. D. Rimstidt, Geochim. Cosmochim. Acta 58, 5443 (1994)]. About 5000 years are required to oxidize a 100-μm pyrite grain in an aqueous solution of low ionic strength, pH of 5 (the calculation is not very sensitive to pH), 25°C, and with 1 μM of oxygen. Soils typically range from 3000 to 100,000 years in age [W. H. Schlesinger, Nature 348, 232 (1990); P. W. Birklund, Pedology, Weathering, and Geomorphological Research (Oxford Univ. Press, Oxford, 1974)]. Therefore, with 1 μM oxygen, sufficient time should be available during weathering for substantial pyrite oxidation, leading to the accumulation of sulfate into the oceans. An oxygen concentration of 1 μM is about 0.4% of the present-day, air-saturated concentration of 260 μM at 25°C in fresh water.
-
(1974)
Pedology, Weathering, and Geomorphological Research
-
-
Birklund, P.W.1
-
13
-
-
0343652829
-
-
note
-
CDT
-
-
-
-
14
-
-
0002657362
-
-
J. W. Schopf, Ed. Princeton Univ. Press, Princeton, NJ
-
J. M. Hayes, in Earth's Earliest Biosphere, Its Origin and Evolution, J. W. Schopf, Ed. (Princeton Univ. Press, Princeton, NJ, 1983), pp. 291-301; D. E. Canfield, Nature 396, 450 (1998).
-
(1983)
Earth's Earliest Biosphere, Its Origin and Evolution
, pp. 291-301
-
-
Hayes, J.M.1
-
15
-
-
0032480974
-
-
J. M. Hayes, in Earth's Earliest Biosphere, Its Origin and Evolution, J. W. Schopf, Ed. (Princeton Univ. Press, Princeton, NJ, 1983), pp. 291-301; D. E. Canfield, Nature 396, 450 (1998).
-
(1998)
Nature
, vol.396
, pp. 450
-
-
Canfield, D.E.1
-
16
-
-
34447120847
-
-
I. R. Kaplan and S. C. Rittenberg, J. Gen. Microbiol. 34, 195 (1964); L. A. Chambers, P. A. Trudinger, J. W. Smith, M. S. Burns, Can. J. Microbiol. 21, 1602 (1975).
-
(1964)
J. Gen. Microbiol.
, vol.34
, pp. 195
-
-
Kaplan, I.R.1
Rittenberg, S.C.2
-
17
-
-
0016698292
-
-
I. R. Kaplan and S. C. Rittenberg, J. Gen. Microbiol. 34, 195 (1964); L. A. Chambers, P. A. Trudinger, J. W. Smith, M. S. Burns, Can. J. Microbiol. 21, 1602 (1975).
-
(1975)
Can. J. Microbiol.
, vol.21
, pp. 1602
-
-
Chambers, L.A.1
Trudinger, P.A.2
Smith, J.W.3
Burns, M.S.4
-
18
-
-
0023133166
-
-
H. Ohmoto and R. P. Felder, Nature 328, 244 (1987); T. Kakegawa, H. Kawai, H. Ohmoto, Geochim. Cosmochim. Acta 62, 3205 (1998).
-
(1987)
Nature
, vol.328
, pp. 244
-
-
Ohmoto, H.1
Felder, R.P.2
-
19
-
-
0032463404
-
-
H. Ohmoto and R. P. Felder, Nature 328, 244 (1987); T. Kakegawa, H. Kawai, H. Ohmoto, Geochim. Cosmochim. Acta 62, 3205 (1998).
-
(1998)
Geochim. Cosmochim. Acta
, vol.62
, pp. 3205
-
-
Kakegawa, T.1
Kawai, H.2
Ohmoto, H.3
-
20
-
-
0000867798
-
-
J. B. Corliss et al., Science 203, 1073 (1979).
-
(1979)
Science
, vol.203
, pp. 1073
-
-
Corliss, J.B.1
-
22
-
-
0342347620
-
-
note
-
At 88°C, a large decrease in fractionation was observed with both limiting and nonlimiting substrate (Fig. 1A). This decrease was accompanied by a decrease in sulfate reduction rate (Fig. 1B), and we speculate that this high temperature approached the upper limit for growth by the sulfate-reducing population. Reduced fractionations are sometimes ob served when organisms metabolize considerably outside of their optimal growth range (8), perhaps as a result of physiological stress on the organism.
-
-
-
-
23
-
-
4243548898
-
-
The actual isotopic composition of Guaymas Basin sedimentary sulfides has yet to be reported, but a substantial mantle-derived hydrothermal source of sulfide could overprint biological fractionations from sulfate reduction [J. M. Peter and W. C. Shanks III, Geochim. Cosmochim. Acta 56, 1025 (1992)].
-
(1992)
Geochim. Cosmochim. Acta
, vol.56
, pp. 1025
-
-
Peter, J.M.1
Shanks W.C. III2
-
26
-
-
0343652825
-
-
note
-
2 produces reduced fractionations compared with organic substrates (8)] and physiological state of the organism (12). Furthermore, interspecies differences in isotope fractionation are possible, but as yet poorly explored.
-
-
-
-
27
-
-
0343217212
-
-
note
-
The isotopic composition of sulfide in a closed system will match the isotopic composition of the original sulfate after sulfate depletion, regardless of the fractionation.
-
-
-
-
31
-
-
0342347618
-
-
note
-
Considerably higher fluxes of organic carbon to early Archean sediments would have required higher ocean nutrient concentrations and more active nutrient cycling, leading to much higher rates of photosynthetic primary production. We are unaware of any data supporting such high rates of carbon production and remineralization in the early Archean.
-
-
-
-
33
-
-
0031411616
-
-
-1) and with sulfate depletion at the shallow depth of 10 to 20 cm [J. P. Chanton, C. S. Martens, M. B. Goldhaber, Geochim. Cosmochim. Acta 51, 1201 (1987); J. Val Klump and C. S. Martens, Geochim. Cosmochim. Acta 51, 1161 (1987)].
-
(1997)
Geochim. Cosmochim. Acta
, vol.61
, pp. 5351
-
-
-
34
-
-
0023524468
-
-
-1) and with sulfate depletion at the shallow depth of 10 to 20 cm [J. P. Chanton, C. S. Martens, M. B. Goldhaber, Geochim. Cosmochim. Acta 51, 1201 (1987); J. Val Klump and C. S. Martens, Geochim. Cosmochim. Acta 51, 1161 (1987)].
-
(1987)
Geochim. Cosmochim. Acta
, vol.51
, pp. 1201
-
-
Chanton, J.P.1
Martens, C.S.2
Goldhaber, M.B.3
-
35
-
-
0023512339
-
-
-1) and with sulfate depletion at the shallow depth of 10 to 20 cm [J. P. Chanton, C. S. Martens, M. B. Goldhaber, Geochim. Cosmochim. Acta 51, 1201 (1987); J. Val Klump and C. S. Martens, Geochim. Cosmochim. Acta 51, 1161 (1987)].
-
(1987)
Geochim. Cosmochim. Acta
, vol.51
, pp. 1161
-
-
Val Klump, J.1
Martens, C.S.2
-
36
-
-
0031425346
-
-
A sulfate level of around 2.0 mM has been suggested for 3.2-Ga seawater from the analysis of fluid inclusions within quartz veinlets and vugs dispersed within ironstone pods believed to be precipitated in a sea floor hydrothermal vent setting [C. E. J. de Ronde, D. M. deR. Channer, K. Faure, C. J. Bray, E. T. C. Spooner, Geochim Cosmochim. Acta 61, 4025 (1997)]. Although this is a low concentration compared with modern seawater, our results support even lower Archean seawater sulfate concentrations.
-
(1997)
Geochim Cosmochim. Acta
, vol.61
, pp. 4025
-
-
De Ronde, C.E.J.1
Channer, D.M.DeR.2
Faure, K.3
Bray, C.J.4
Spooner, E.T.C.5
-
38
-
-
0002189276
-
-
L. L. Barton, Ed. Plenum, New York
-
Phylogenies constructed from sequence comparisons of the 165 ribosomal RNA molecule show thermophilic sulfate-reducing bacteria of the genus Thermodesulfobacterium branching more deeply within the Bacterial domain than the lineage housing Cyanobacteria [E. Stackebrandt, D. A. Stahl, R. Devereux, in Sulfate-Reducing Bacteria, L. L. Barton, Ed. (Plenum, New York, 1995), pp. 49-87; N. R. Pace, Science 276, 734 (1997)]. This observation supports an early evolution of sulfate-reducing bacteria, predating the evolution of oxygen- producing Cyanobacteria.
-
(1995)
Sulfate-Reducing Bacteria
, pp. 49-87
-
-
Stackebrandt, E.1
Stahl, D.A.2
Devereux, R.3
-
39
-
-
0030982247
-
-
Phylogenies constructed from sequence comparisons of the 165 ribosomal RNA molecule show thermophilic sulfate-reducing bacteria of the genus Thermodesulfobacterium branching more deeply within the Bacterial domain than the lineage housing Cyanobacteria [E. Stackebrandt, D. A. Stahl, R. Devereux, in Sulfate-Reducing Bacteria, L. L. Barton, Ed. (Plenum, New York, 1995), pp. 49-87; N. R. Pace, Science 276, 734 (1997)]. This observation supports an early evolution of sulfate-reducing bacteria, predating the evolution of oxygen-producing Cyanobacteria.
-
(1997)
Science
, vol.276
, pp. 734
-
-
Pace, N.R.1
-
41
-
-
0016984263
-
-
A. M. Goodwin, J. Monster, H. G. Thode, Econ. Geol. 71, 870 (1976); H. G. Thode and A. M. Goodwin, Precambrian Res. 20, 337 (1983).
-
(1976)
Econ. Geol.
, vol.71
, pp. 870
-
-
Goodwin, A.M.1
Monster, J.2
Thode, H.G.3
-
42
-
-
0020974811
-
-
A. M. Goodwin, J. Monster, H. G. Thode, Econ. Geol. 71, 870 (1976); H. G. Thode and A. M. Goodwin, Precambrian Res. 20, 337 (1983).
-
(1983)
Precambrian Res.
, vol.20
, pp. 337
-
-
Thode, H.G.1
Goodwin, A.M.2
-
43
-
-
0000077259
-
-
R. N. Norris and R. M. Corfield, Eds. Paleontological Society, Pittsburgh, PA
-
A. H. Knoll and D. E. Canfield, in Isotope Paleobiology and Paleoecology, R. N. Norris and R. M. Corfield, Eds. (Paleontological Society, Pittsburgh, PA, 1998), pp. 212-243; D. E. Canfield and R. Raiswell, Am. J. Sci. 299, 697 (1999); E. M. Cameron, Nature 296, 145 (1982).
-
(1998)
Isotope Paleobiology and Paleoecology
, pp. 212-243
-
-
Knoll, A.H.1
Canfield, D.E.2
-
44
-
-
0039657184
-
-
A. H. Knoll and D. E. Canfield, in Isotope Paleobiology and Paleoecology, R. N. Norris and R. M. Corfield, Eds. (Paleontological Society, Pittsburgh, PA, 1998), pp. 212-243; D. E. Canfield and R. Raiswell, Am. J. Sci. 299, 697 (1999); E. M. Cameron, Nature 296, 145 (1982).
-
(1999)
Am. J. Sci.
, vol.299
, pp. 697
-
-
Canfield, D.E.1
Raiswell, R.2
-
45
-
-
0019999193
-
-
A. H. Knoll and D. E. Canfield, in Isotope Paleobiology and Paleoecology, R. N. Norris and R. M. Corfield, Eds. (Paleontological Society, Pittsburgh, PA, 1998), pp. 212-243; D. E. Canfield and R. Raiswell, Am. J. Sci. 299, 697 (1999); E. M. Cameron, Nature 296, 145 (1982).
-
(1982)
Nature
, vol.296
, pp. 145
-
-
Cameron, E.M.1
-
46
-
-
0033551919
-
-
J. J. Brocks, G. A. Logan, R. Buick, R. E. Summons, Science 285, 1033 (1999).
-
(1999)
Science
, vol.285
, pp. 1033
-
-
Brocks, J.J.1
Logan, G.A.2
Buick, R.3
Summons, R.E.4
-
47
-
-
0343217201
-
-
Supplemental data are available at www.sciencemag. org/feature/data/1048533.shl.
-
-
-
-
50
-
-
0342782669
-
-
note
-
We are indebted to the late H. Jannasch and A. Teske for arranging a wonderful cruise to the Guaymas Basin and to the Alvin and Atlantis crews for their expert technical support. We thank J. Nielsen, Y. Shen, R. Buick, and two anonymous reviewers for critical comments and L. Sailing for help in the lab. Generous support was provided by the Danish National Research Foundation and the Madam Curie Training Program of the EU.
-
-
-
|