메뉴 건너뛰기




Volumn 122, Issue 18, 2000, Pages 4320-4330

Kinetics and thermodynamics of alkene complexation in d0 metal-alkyl- alkene complexes

Author keywords

[No Author keywords available]

Indexed keywords

ALKENE DERIVATIVE; METAL COMPLEX; YTTRIUM;

EID: 0034630836     PISSN: 00027863     EISSN: None     Source Type: Journal    
DOI: 10.1021/ja9931022     Document Type: Article
Times cited : (48)

References (67)
  • 1
    • 0642313057 scopus 로고    scopus 로고
    • Reviews: (a) Kaminsky, W.; Arndt, M. Adv. Polym. Sci. 1997, 127, 143. (b) Bochmann, M. J. Chem. Soc., Dalton Trans. 1996, 255. (c) Brintzinger, H. H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 1143.
    • (1997) Adv. Polym. Sci. , vol.127 , pp. 143
    • Kaminsky, W.1    Arndt, M.2
  • 2
    • 33646099282 scopus 로고    scopus 로고
    • Reviews: (a) Kaminsky, W.; Arndt, M. Adv. Polym. Sci. 1997, 127, 143. (b) Bochmann, M. J. Chem. Soc., Dalton Trans. 1996, 255. (c) Brintzinger, H. H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 1143.
    • (1996) Chem. Soc., Dalton Trans. , pp. 255
    • Bochmann, M.J.1
  • 9
    • 2642682816 scopus 로고
    • 6 cobalt-alkyl-alkene complexes have been directly observed in olefin polymerizations involving late transition metals. (a) Rix, F. C.; Brookhart, M. J. Am. Chem. Soc. 1995, 117, 1137. (b) Brookhart, M.; Volpe, A. F. Jr.; Lincoln, D. M.; Horváth, I. T.; Millar, J. M. J. Am. Chem. Soc. 1990, 112, 5634.
    • (1995) J. Am. Chem. Soc. , vol.117 , pp. 1137
    • Rix, F.C.1    Brookhart, M.2
  • 10
    • 0000451175 scopus 로고
    • 6 cobalt-alkyl-alkene complexes have been directly observed in olefin polymerizations involving late transition metals. (a) Rix, F. C.; Brookhart, M. J. Am. Chem. Soc. 1995, 117, 1137. (b) Brookhart, M.; Volpe, A. F. Jr.; Lincoln, D. M.; Horváth, I. T.; Millar, J. M. J. Am. Chem. Soc. 1990, 112, 5634.
    • (1990) J. Am. Chem. Soc. , vol.112 , pp. 5634
    • Brookhart, M.1    Volpe A.F., Jr.2    Lincoln, D.M.3    Horváth, I.T.4    Millar, J.M.5
  • 17
    • 0343816397 scopus 로고    scopus 로고
    • note
    • 1/2 = 44 Hz).
  • 19
    • 0343816394 scopus 로고    scopus 로고
    • note
    • 3).
  • 21
    • 0343380709 scopus 로고    scopus 로고
    • note
    • -1).
  • 22
    • 0342511105 scopus 로고    scopus 로고
    • note
    • In contrast to chelate 1, in which one terminal vinyl hydrogen resonance shifts to higher frequency and the other shifts to lower frequency, both of the vinyl hydrogen resonances of chelate 6 shift to lower frequency.
  • 23
    • 0342511104 scopus 로고    scopus 로고
    • See Supporting Information
    • See Supporting Information.
  • 24
    • 0342945252 scopus 로고    scopus 로고
    • note
    • 12.
  • 25
    • 0342945253 scopus 로고    scopus 로고
    • note
    • 1/2 = 28 Hz) for rapidly exchanging bound and free cis-2,5-dimethyl-THF and for rapidly exchanging bound and free trans-2,5-dimethyl-THF.
  • 26
    • 0343380708 scopus 로고    scopus 로고
    • note
    • At higher temperatures, 2,5-dimethyl-THF binds to yttrium less well because the formation of the bimolecular complex is entropically disfavored. Intramolecular coordination of the tethered alkene is less entropically disfavored and competes with 2,5-dimethyl-THF for complexation at yttrium more effectively at higher temperature.
  • 27
    • 0343380707 scopus 로고    scopus 로고
    • note
    • At -37 °C (236 K), we have excellent direct measurement of the equilibria between 7-on and 11. For equilibria between 6-on and 10, 6-on and 6-off, 7-on and 11, 8-on and 12, and 1-on and 13, data was obtained at temperatures below and above -37 °C and free energy and equilibrium constants can easily be interpolated to -37 °C.
  • 28
    • 0000910705 scopus 로고
    • 1/2 = 65 Hz) for rapidly exchanging bound and free cis-and trans-2,5-dimethyl-THF. At -122 °C, five resonances are seen for the a-hydrogens of THF, corresponding to decoalesced resonances for both free and bound 2,5-dimethyl-THF. The resonances for free cis-2,5-dimethyl-THF and for free trans-2,5-dimethyl-THF appear at δ 3.74 and 3.98. Three broad singlets for 2,5-dimethyl-THF complexed in 11 were seen at δ 4.16, 4.30, and 4.46 with relative intensity of 1:2:1. We assume that, like THF, 2,5-dimethyl-THF binds so that the plane of the THF ring coincides with the plane between the Cp* ligands. (Jordan, R. F. Adv. Organomet. Chem. 1991, 32, 325, Den Haan, K. H.; De Boer, J. L.; Teuben, J. H.; Smeets, W. J. J.; Spek, A. L. J. Organomet. Chem. 1987, 327, 31. Evans, W. J.; Dominguez, R.; Hanusa, T. P. Organometallics 1986, 5, 263.) At -122 °C, 2,5-dimethyl-THF does not rotate freely about the yttrium-oxygen bond and the two α-hydrogens of cis-2,5-dimethyl-THF are inequivalent. Similarly, the two α-hydrogens of complexed trans-2,5-dimethyl-THF are inequivalent. If cis- and trans-2,5-dimethyl-THF bind equally strongly, four equal intensity resonances are expected. The observed 1:2:1 intensity pattern is due to chemical shift degeneracy of two of the resonances. On warming, these three resonances coalesce with the free 2,5-dimethyl-THF resonances. These spectra are consistent with equal binding of the two isomers of 2,5- dimethyl-THF.
    • (1991) Adv. Organomet. Chem. , vol.32 , pp. 325
    • Jordan, R.F.1
  • 29
    • 0002495873 scopus 로고
    • 1/2 = 65 Hz) for rapidly exchanging bound and free cis- and trans-2,5-dimethyl-THF. At -122 °C, five resonances are seen for the a-hydrogens of THF, corresponding to decoalesced resonances for both free and bound 2,5-dimethyl-THF. The resonances for free cis-2,5-dimethyl- THF and for free trans-2,5-dimethyl-THF appear at δ 3.74 and 3.98. Three broad singlets for 2,5-dimethyl-THF complexed in 11 were seen at δ 4.16, 4.30, and 4.46 with relative intensity of 1:2:1. We assume that, like THF, 2,5-dimethyl-THF binds so that the plane of the THF ring coincides with the plane between the Cp* ligands. (Jordan, R. F. Adv. Organomet. Chem. 1991, 32, 325, Den Haan, K. H.; De Boer, J. L.; Teuben, J. H.; Smeets, W. J. J.; Spek, A. L. J. Organomet. Chem. 1987, 327, 31. Evans, W. J.; Dominguez, R.; Hanusa, T. P. Organometallics 1986, 5, 263.) At -122 °C, 2,5-dimethyl-THF does not rotate freely about the yttrium-oxygen bond and the two α-hydrogens of cis-2,5-dimethyl-THF are inequivalent. Similarly, the two α-hydrogens of complexed trans-2,5-dimethyl-THF are inequivalent. If cis- and trans-2,5-dimethyl-THF bind equally strongly, four equal intensity resonances are expected. The observed 1:2:1 intensity pattern is due to chemical shift degeneracy of two of the resonances. On warming, these three resonances coalesce with the free 2,5-dimethyl-THF resonances. These spectra are consistent with equal binding of the two isomers of 2,5- dimethyl-THF.
    • (1987) J. Organomet. Chem. , vol.327 , pp. 31
    • Den Haan, K.H.1    De Boer, J.L.2    Teuben, J.H.3    Smeets, W.J.J.4    Spek, A.L.5
  • 30
    • 0001657686 scopus 로고
    • At -122 °C, 2,5-dimethyl-THF does not rotate freely about the yttrium-oxygen bond and the two α-hydrogens of cis-2,5-dimethyl-THF are inequivalent. Similarly, the two α-hydrogens of complexed trans-2,5-dimethyl-THF are inequivalent. If cis- and trans-2,5-dimethyl-THF bind equally strongly, four equal intensity resonances are expected. The observed 1:2:1 intensity pattern is due to chemical shift degeneracy of two of the resonances. On warming, these three resonances coalesce with the free 2,5-dimethyl-THF resonances. These spectra are consistent with equal binding of the two isomers of 2,5-dimethyl-THF
    • 1/2 = 65 Hz) for rapidly exchanging bound and free cis- and trans-2,5-dimethyl-THF. At -122 °C, five resonances are seen for the a-hydrogens of THF, corresponding to decoalesced resonances for both free and bound 2,5-dimethyl-THF. The resonances for free cis-2,5-dimethyl- THF and for free trans-2,5-dimethyl-THF appear at δ 3.74 and 3.98. Three broad singlets for 2,5-dimethyl-THF complexed in 11 were seen at δ 4.16, 4.30, and 4.46 with relative intensity of 1:2:1. We assume that, like THF, 2,5-dimethyl-THF binds so that the plane of the THF ring coincides with the plane between the Cp* ligands. (Jordan, R. F. Adv. Organomet. Chem. 1991, 32, 325, Den Haan, K. H.; De Boer, J. L.; Teuben, J. H.; Smeets, W. J. J.; Spek, A. L. J. Organomet. Chem. 1987, 327, 31. Evans, W. J.; Dominguez, R.; Hanusa, T. P. Organometallics 1986, 5, 263.) At -122 °C, 2,5-dimethyl-THF does not rotate freely about the yttrium-oxygen bond and the two α-hydrogens of cis-2,5-dimethyl-THF are inequivalent. Similarly, the two α-hydrogens of complexed trans-2,5-dimethyl-THF are inequivalent. If cis- and trans-2,5-dimethyl-THF bind equally strongly, four equal intensity resonances are expected. The observed 1:2:1 intensity pattern is due to chemical shift degeneracy of two of the resonances. On warming, these three resonances coalesce with the free 2,5-dimethyl-THF resonances. These spectra are consistent with equal binding of the two isomers of 2,5-dimethyl-THF.
    • (1986) Organometallics , vol.5 , pp. 263
    • Evans, W.J.1    Dominguez, R.2    Hanusa, T.P.3
  • 31
    • 0343816391 scopus 로고    scopus 로고
    • note
    • trans) = 1.05 ppm] were used as estimates for 1-off.
  • 32
    • 0343816389 scopus 로고    scopus 로고
    • note
    • -4 M.
  • 41
    • 0003971643 scopus 로고
    • McGraw-Hill: New York
    • For a brief description of the Thorpe-Ingold effect, see: Eliel, E. L. Stereochemistry of Carbon Compounds; McGraw-Hill: New York, 1962; pp 196-198. Eliel, E. L.; Allinger, N. L.; Angyal, S. J.; Morrison, G. A. Conformational Analysis; Interscience: New York, 1965; pp 191-192.
    • (1962) Stereochemistry of Carbon Compounds , pp. 196-198
    • Eliel, E.L.1
  • 42
    • 0004117577 scopus 로고
    • Interscience: New York
    • For a brief description of the Thorpe-Ingold effect, see: Eliel, E. L. Stereochemistry of Carbon Compounds; McGraw-Hill: New York, 1962; pp 196-198. Eliel, E. L.; Allinger, N. L.; Angyal, S. J.; Morrison, G. A. Conformational Analysis; Interscience: New York, 1965; pp 191-192.
    • (1965) Conformational Analysis , pp. 191-192
    • Eliel, E.L.1    Allinger, N.L.2    Angyal, S.J.3    Morrison, G.A.4
  • 43
    • 0010214299 scopus 로고
    • 0 metal center is predicted to adopt a pyramidal geometry in order to accommodate an energetically favorable β-CH agostic interaction. (a) Ziegler, T.; Folga, E.; Berces, A. J. Am. Chem, Soc, 1993, 115, 636. (b) Woo, T. K.; Fan, L.; Ziegler, T. Organometallics 1994, 13, 2252. Yoshida, T.; Koga, N.; Morokuma, K. Organometallics 1995, 14, 746. Weiss, H.; Ehrig, M.; Ahlrichs, R. J. Am. Chem. Soc. 1994, 116, 4919. (e) Kawamura-Kuribayashi, H.; Koga, N.; Morokuma, K. J. Am. Chem. Soc. 1992, 114, 8687.
    • (1993) J. Am. Chem, Soc , vol.115 , pp. 636
    • Ziegler, T.1    Folga, E.2    Berces, A.3
  • 44
    • 10244234385 scopus 로고
    • 0 metal center is predicted to adopt a pyramidal geometry in order to accommodate an energetically favorable β-CH agostic interaction. (a) Ziegler, T.; Folga, E.; Berces, A. J. Am. Chem, Soc, 1993, 115, 636. (b) Woo, T. K.; Fan, L.; Ziegler, T. Organometallics 1994, 13, 2252. Yoshida, T.; Koga, N.; Morokuma, K. Organometallics 1995, 14, 746. Weiss, H.; Ehrig, M.; Ahlrichs, R. J. Am. Chem. Soc. 1994, 116, 4919. (e) Kawamura-Kuribayashi, H.; Koga, N.; Morokuma, K. J. Am. Chem. Soc. 1992, 114, 8687.
    • (1994) Organometallics , vol.13 , pp. 2252
    • Woo, T.K.1    Fan, L.2    Ziegler, T.3
  • 45
    • 33751156688 scopus 로고
    • 0 metal center is predicted to adopt a pyramidal geometry in order to accommodate an energetically favorable β-CH agostic interaction. (a) Ziegler, T.; Folga, E.; Berces, A. J. Am. Chem, Soc, 1993, 115, 636. (b) Woo, T. K.; Fan, L.; Ziegler, T. Organometallics 1994, 13, 2252. Yoshida, T.; Koga, N.; Morokuma, K. Organometallics 1995, 14, 746. Weiss, H.; Ehrig, M.; Ahlrichs, R. J. Am. Chem. Soc. 1994, 116, 4919. (e) Kawamura-Kuribayashi, H.; Koga, N.; Morokuma, K. J. Am. Chem. Soc. 1992, 114, 8687.
    • (1995) Organometallics , vol.14 , pp. 746
    • Yoshida, T.1    Koga, N.2    Morokuma, K.3
  • 46
    • 12044255701 scopus 로고
    • 0 metal center is predicted to adopt a pyramidal geometry in order to accommodate an energetically favorable β-CH agostic interaction. (a) Ziegler, T.; Folga, E.; Berces, A. J. Am. Chem, Soc, 1993, 115, 636. (b) Woo, T. K.; Fan, L.; Ziegler, T. Organometallics 1994, 13, 2252. Yoshida, T.; Koga, N.; Morokuma, K. Organometallics 1995, 14, 746. Weiss, H.; Ehrig, M.; Ahlrichs, R. J. Am. Chem. Soc. 1994, 116, 4919. (e) Kawamura-Kuribayashi, H.; Koga, N.; Morokuma, K. J. Am. Chem. Soc. 1992, 114, 8687.
    • (1994) J. Am. Chem. Soc. , vol.116 , pp. 4919
    • Weiss, H.1    Ehrig, M.2    Ahlrichs, R.3
  • 47
    • 0000204495 scopus 로고
    • 0 metal center is predicted to adopt a pyramidal geometry in order to accommodate an energetically favorable β-CH agostic interaction. (a) Ziegler, T.; Folga, E.; Berces, A. J. Am. Chem, Soc, 1993, 115, 636. (b) Woo, T. K.; Fan, L.; Ziegler, T. Organometallics 1994, 13, 2252. Yoshida, T.; Koga, N.; Morokuma, K. Organometallics 1995, 14, 746. Weiss, H.; Ehrig, M.; Ahlrichs, R. J. Am. Chem. Soc. 1994, 116, 4919. (e) Kawamura-Kuribayashi, H.; Koga, N.; Morokuma, K. J. Am. Chem. Soc. 1992, 114, 8687.
    • (1992) J. Am. Chem. Soc. , vol.114 , pp. 8687
    • Kawamura-Kuribayashi, H.1    Koga, N.2    Morokuma, K.3
  • 52
    • 0029638498 scopus 로고
    • 8, in which ion pair separation is not solvent assisted. Deck, P. A.; Marks, T. J. J. Am. Chem. Soc. 1995, 117, 6128.
    • (1995) J. Am. Chem. Soc. , vol.117 , pp. 6128
    • Deck, P.A.1    Marks, T.J.2
  • 67
    • 0342945240 scopus 로고    scopus 로고
    • See Supporting Information for General Procedures
    • See Supporting Information for General Procedures.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.