메뉴 건너뛰기




Volumn 65, Issue 9, 2000, Pages 2763-2772

Radical addition to, isonitriles: A route to polyfunctionalized alkenes through a novel three-component radical cascade reaction

Author keywords

[No Author keywords available]

Indexed keywords

ALKENE; AROMATIC COMPOUND; DISULFIDE; ISONITRILE DERIVATIVE; RADICAL;

EID: 0034607923     PISSN: 00223263     EISSN: None     Source Type: Journal    
DOI: 10.1021/jo991871y     Document Type: Article
Times cited : (56)

References (120)
  • 14
    • 37049078793 scopus 로고
    • (l) Diart, V.; Roberts, B. P. J. Chem. Soc., Perkin Trans. 2 1992, 1761. For a very recent application resulting in imidoylation of glycoside derivatives, see: Yamago, S.; Miyazoe, H.; Goto, R.; Yoshida, J. Tetrahedron Lett. 1999, 40, 2347.
    • (1992) J. Chem. Soc., Perkin Trans. 2 , vol.1761
    • Diart, V.1    Roberts, B.P.2
  • 15
    • 0033582993 scopus 로고    scopus 로고
    • (l) Diart, V.; Roberts, B. P. J. Chem. Soc., Perkin Trans. 2 1992, 1761. For a very recent application resulting in imidoylation of glycoside derivatives, see: Yamago, S.; Miyazoe, H.; Goto, R.; Yoshida, J. Tetrahedron Lett. 1999, 40, 2347.
    • (1999) Tetrahedron Lett. , vol.40 , pp. 2347
    • Yamago, S.1    Miyazoe, H.2    Goto, R.3    Yoshida, J.4
  • 43
    • 0001183587 scopus 로고
    • Ryu, I.; Yamazaki H.; Kusano, K.; Ogawa, A.; Sonoda, N. J. Am. Chem. Soc. 1991, 113, 8558. Keck, G. E.; Kordik, C. P. Tetrahedron Lett. 1993, 34, 6875. Russell, G. A.; Kulkarni, S. V. J. Org. Chem. 1993, 58, 2678. Lee, E.; Hur, C. U.; Rhee, Y. H.; Park, Y. C.; Kim, S. Y. J. Chem. Soc., Chem. Commun. 1993, 1466. For multicomponent radicalionic sequences see: Ishiyama, T.; Murata, M.; Suzuki, A.; Miyaura, N. J. Chem. Soc., Chem. Commun. 1995, 295. Takai, K.; Ueda, T.; Ikeda, N.; Moriwake, T. J. Org. Chem. 1996, 61, 7990. Tsunoi, S.; Ryu, I.; Yamasaki, S.; Tanaka, M.; Sonoda, N.; Komatsu, M. J. Chem. Soc., Chem. Commun. 1997, 1889. Takai, K.; Matsukawa, N.; Takahashi, A.; Fujii, T. Angew. Chem., Int. Ed. Engl. 1998, 37, 152. For notable nonradical multicomponent procedures involving isonitriles, see: Ugi, I. Angew. Chem., Int. Ed. Engl. 1982, 21, 810. Hanusch-Kompa, C.; Ugi, I. Tetrahedron Lett 1998, 39, 2725.
    • (1991) J. Am. Chem. Soc. , vol.113 , pp. 8558
    • Ryu, I.1    Yamazaki, H.2    Kusano, K.3    Ogawa, A.4    Sonoda, N.5
  • 44
    • 0000423515 scopus 로고
    • Ryu, I.; Yamazaki H.; Kusano, K.; Ogawa, A.; Sonoda, N. J. Am. Chem. Soc. 1991, 113, 8558. Keck, G. E.; Kordik, C. P. Tetrahedron Lett. 1993, 34, 6875. Russell, G. A.; Kulkarni, S. V. J. Org. Chem. 1993, 58, 2678. Lee, E.; Hur, C. U.; Rhee, Y. H.; Park, Y. C.; Kim, S. Y. J. Chem. Soc., Chem. Commun. 1993, 1466. For multicomponent radicalionic sequences see: Ishiyama, T.; Murata, M.; Suzuki, A.; Miyaura, N. J. Chem. Soc., Chem. Commun. 1995, 295. Takai, K.; Ueda, T.; Ikeda, N.; Moriwake, T. J. Org. Chem. 1996, 61, 7990. Tsunoi, S.; Ryu, I.; Yamasaki, S.; Tanaka, M.; Sonoda, N.; Komatsu, M. J. Chem. Soc., Chem. Commun. 1997, 1889. Takai, K.; Matsukawa, N.; Takahashi, A.; Fujii, T. Angew. Chem., Int. Ed. Engl. 1998, 37, 152. For notable nonradical multicomponent procedures involving isonitriles, see: Ugi, I. Angew. Chem., Int. Ed. Engl. 1982, 21, 810. Hanusch-Kompa, C.; Ugi, I. Tetrahedron Lett 1998, 39, 2725.
    • (1993) Tetrahedron Lett. , vol.34 , pp. 6875
    • Keck, G.E.1    Kordik, C.P.2
  • 45
    • 0343615305 scopus 로고
    • Ryu, I.; Yamazaki H.; Kusano, K.; Ogawa, A.; Sonoda, N. J. Am. Chem. Soc. 1991, 113, 8558. Keck, G. E.; Kordik, C. P. Tetrahedron Lett. 1993, 34, 6875. Russell, G. A.; Kulkarni, S. V. J. Org. Chem. 1993, 58, 2678. Lee, E.; Hur, C. U.; Rhee, Y. H.; Park, Y. C.; Kim, S. Y. J. Chem. Soc., Chem. Commun. 1993, 1466. For multicomponent radicalionic sequences see: Ishiyama, T.; Murata, M.; Suzuki, A.; Miyaura, N. J. Chem. Soc., Chem. Commun. 1995, 295. Takai, K.; Ueda, T.; Ikeda, N.; Moriwake, T. J. Org. Chem. 1996, 61, 7990. Tsunoi, S.; Ryu, I.; Yamasaki, S.; Tanaka, M.; Sonoda, N.; Komatsu, M. J. Chem. Soc., Chem. Commun. 1997, 1889. Takai, K.; Matsukawa, N.; Takahashi, A.; Fujii, T. Angew. Chem., Int. Ed. Engl. 1998, 37, 152. For notable nonradical multicomponent procedures involving isonitriles, see: Ugi, I. Angew. Chem., Int. Ed. Engl. 1982, 21, 810. Hanusch-Kompa, C.; Ugi, I. Tetrahedron Lett 1998, 39, 2725.
    • (1993) J. Org. Chem. , vol.58 , pp. 2678
    • Russell, G.A.1    Kulkarni, S.V.2
  • 46
    • 37049089718 scopus 로고
    • Ryu, I.; Yamazaki H.; Kusano, K.; Ogawa, A.; Sonoda, N. J. Am. Chem. Soc. 1991, 113, 8558. Keck, G. E.; Kordik, C. P. Tetrahedron Lett. 1993, 34, 6875. Russell, G. A.; Kulkarni, S. V. J. Org. Chem. 1993, 58, 2678. Lee, E.; Hur, C. U.; Rhee, Y. H.; Park, Y. C.; Kim, S. Y. J. Chem. Soc., Chem. Commun. 1993, 1466. For multicomponent radicalionic sequences see: Ishiyama, T.; Murata, M.; Suzuki, A.; Miyaura, N. J. Chem. Soc., Chem. Commun. 1995, 295. Takai, K.; Ueda, T.; Ikeda, N.; Moriwake, T. J. Org. Chem. 1996, 61, 7990. Tsunoi, S.; Ryu, I.; Yamasaki, S.; Tanaka, M.; Sonoda, N.; Komatsu, M. J. Chem. Soc., Chem. Commun. 1997, 1889. Takai, K.; Matsukawa, N.; Takahashi, A.; Fujii, T. Angew. Chem., Int. Ed. Engl. 1998, 37, 152. For notable nonradical multicomponent procedures involving isonitriles, see: Ugi, I. Angew. Chem., Int. Ed. Engl. 1982, 21, 810. Hanusch-Kompa, C.; Ugi, I. Tetrahedron Lett 1998, 39, 2725.
    • (1993) J. Chem. Soc., Chem. Commun. , pp. 1466
    • Lee, E.1    Hur, C.U.2    Rhee, Y.H.3    Park, Y.C.4    Kim, S.Y.5
  • 47
    • 37049077304 scopus 로고
    • Ryu, I.; Yamazaki H.; Kusano, K.; Ogawa, A.; Sonoda, N. J. Am. Chem. Soc. 1991, 113, 8558. Keck, G. E.; Kordik, C. P. Tetrahedron Lett. 1993, 34, 6875. Russell, G. A.; Kulkarni, S. V. J. Org. Chem. 1993, 58, 2678. Lee, E.; Hur, C. U.; Rhee, Y. H.; Park, Y. C.; Kim, S. Y. J. Chem. Soc., Chem. Commun. 1993, 1466. For multicomponent radicalionic sequences see: Ishiyama, T.; Murata, M.; Suzuki, A.; Miyaura, N. J. Chem. Soc., Chem. Commun. 1995, 295. Takai, K.; Ueda, T.; Ikeda, N.; Moriwake, T. J. Org. Chem. 1996, 61, 7990. Tsunoi, S.; Ryu, I.; Yamasaki, S.; Tanaka, M.; Sonoda, N.; Komatsu, M. J. Chem. Soc., Chem. Commun. 1997, 1889. Takai, K.; Matsukawa, N.; Takahashi, A.; Fujii, T. Angew. Chem., Int. Ed. Engl. 1998, 37, 152. For notable nonradical multicomponent procedures involving isonitriles, see: Ugi, I. Angew. Chem., Int. Ed. Engl. 1982, 21, 810. Hanusch-Kompa, C.; Ugi, I. Tetrahedron Lett 1998, 39, 2725.
    • (1995) J. Chem. Soc., Chem. Commun. , pp. 295
    • Ishiyama, T.1    Murata, M.2    Suzuki, A.3    Miyaura, N.4
  • 48
    • 0344148437 scopus 로고    scopus 로고
    • Ryu, I.; Yamazaki H.; Kusano, K.; Ogawa, A.; Sonoda, N. J. Am. Chem. Soc. 1991, 113, 8558. Keck, G. E.; Kordik, C. P. Tetrahedron Lett. 1993, 34, 6875. Russell, G. A.; Kulkarni, S. V. J. Org. Chem. 1993, 58, 2678. Lee, E.; Hur, C. U.; Rhee, Y. H.; Park, Y. C.; Kim, S. Y. J. Chem. Soc., Chem. Commun. 1993, 1466. For multicomponent radicalionic sequences see: Ishiyama, T.; Murata, M.; Suzuki, A.; Miyaura, N. J. Chem. Soc., Chem. Commun. 1995, 295. Takai, K.; Ueda, T.; Ikeda, N.; Moriwake, T. J. Org. Chem. 1996, 61, 7990. Tsunoi, S.; Ryu, I.; Yamasaki, S.; Tanaka, M.; Sonoda, N.; Komatsu, M. J. Chem. Soc., Chem. Commun. 1997, 1889. Takai, K.; Matsukawa, N.; Takahashi, A.; Fujii, T. Angew. Chem., Int. Ed. Engl. 1998, 37, 152. For notable nonradical multicomponent procedures involving isonitriles, see: Ugi, I. Angew. Chem., Int. Ed. Engl. 1982, 21, 810. Hanusch-Kompa, C.; Ugi, I. Tetrahedron Lett 1998, 39, 2725.
    • (1996) J. Org. Chem. , vol.61 , pp. 7990
    • Takai, K.1    Ueda, T.2    Ikeda, N.3    Moriwake, T.4
  • 49
    • 0002713758 scopus 로고    scopus 로고
    • Ryu, I.; Yamazaki H.; Kusano, K.; Ogawa, A.; Sonoda, N. J. Am. Chem. Soc. 1991, 113, 8558. Keck, G. E.; Kordik, C. P. Tetrahedron Lett. 1993, 34, 6875. Russell, G. A.; Kulkarni, S. V. J. Org. Chem. 1993, 58, 2678. Lee, E.; Hur, C. U.; Rhee, Y. H.; Park, Y. C.; Kim, S. Y. J. Chem. Soc., Chem. Commun. 1993, 1466. For multicomponent radicalionic sequences see: Ishiyama, T.; Murata, M.; Suzuki, A.; Miyaura, N. J. Chem. Soc., Chem. Commun. 1995, 295. Takai, K.; Ueda, T.; Ikeda, N.; Moriwake, T. J. Org. Chem. 1996, 61, 7990. Tsunoi, S.; Ryu, I.; Yamasaki, S.; Tanaka, M.; Sonoda, N.; Komatsu, M. J. Chem. Soc., Chem. Commun. 1997, 1889. Takai, K.; Matsukawa, N.; Takahashi, A.; Fujii, T. Angew. Chem., Int. Ed. Engl. 1998, 37, 152. For notable nonradical multicomponent procedures involving isonitriles, see: Ugi, I. Angew. Chem., Int. Ed. Engl. 1982, 21, 810. Hanusch-Kompa, C.; Ugi, I. Tetrahedron Lett 1998, 39, 2725.
    • (1997) J. Chem. Soc., Chem. Commun. , pp. 1889
    • Tsunoi, S.1    Ryu, I.2    Yamasaki, S.3    Tanaka, M.4    Sonoda, N.5    Komatsu, M.6
  • 50
    • 0031906806 scopus 로고    scopus 로고
    • Ryu, I.; Yamazaki H.; Kusano, K.; Ogawa, A.; Sonoda, N. J. Am. Chem. Soc. 1991, 113, 8558. Keck, G. E.; Kordik, C. P. Tetrahedron Lett. 1993, 34, 6875. Russell, G. A.; Kulkarni, S. V. J. Org. Chem. 1993, 58, 2678. Lee, E.; Hur, C. U.; Rhee, Y. H.; Park, Y. C.; Kim, S. Y. J. Chem. Soc., Chem. Commun. 1993, 1466. For multicomponent radicalionic sequences see: Ishiyama, T.; Murata, M.; Suzuki, A.; Miyaura, N. J. Chem. Soc., Chem. Commun. 1995, 295. Takai, K.; Ueda, T.; Ikeda, N.; Moriwake, T. J. Org. Chem. 1996, 61, 7990. Tsunoi, S.; Ryu, I.; Yamasaki, S.; Tanaka, M.; Sonoda, N.; Komatsu, M. J. Chem. Soc., Chem. Commun. 1997, 1889. Takai, K.; Matsukawa, N.; Takahashi, A.; Fujii, T. Angew. Chem., Int. Ed. Engl. 1998, 37, 152. For notable nonradical multicomponent procedures involving isonitriles, see: Ugi, I. Angew. Chem., Int. Ed. Engl. 1982, 21, 810. Hanusch-Kompa, C.; Ugi, I. Tetrahedron Lett 1998, 39, 2725.
    • (1998) Angew. Chem., Int. Ed. Engl. , vol.37 , pp. 152
    • Takai, K.1    Matsukawa, N.2    Takahashi, A.3    Fujii, T.4
  • 51
    • 0020211577 scopus 로고
    • Ryu, I.; Yamazaki H.; Kusano, K.; Ogawa, A.; Sonoda, N. J. Am. Chem. Soc. 1991, 113, 8558. Keck, G. E.; Kordik, C. P. Tetrahedron Lett. 1993, 34, 6875. Russell, G. A.; Kulkarni, S. V. J. Org. Chem. 1993, 58, 2678. Lee, E.; Hur, C. U.; Rhee, Y. H.; Park, Y. C.; Kim, S. Y. J. Chem. Soc., Chem. Commun. 1993, 1466. For multicomponent radicalionic sequences see: Ishiyama, T.; Murata, M.; Suzuki, A.; Miyaura, N. J. Chem. Soc., Chem. Commun. 1995, 295. Takai, K.; Ueda, T.; Ikeda, N.; Moriwake, T. J. Org. Chem. 1996, 61, 7990. Tsunoi, S.; Ryu, I.; Yamasaki, S.; Tanaka, M.; Sonoda, N.; Komatsu, M. J. Chem. Soc., Chem. Commun. 1997, 1889. Takai, K.; Matsukawa, N.; Takahashi, A.; Fujii, T. Angew. Chem., Int. Ed. Engl. 1998, 37, 152. For notable nonradical multicomponent procedures involving isonitriles, see: Ugi, I. Angew. Chem., Int. Ed. Engl. 1982, 21, 810. Hanusch-Kompa, C.; Ugi, I. Tetrahedron Lett 1998, 39, 2725.
    • (1982) Angew. Chem., Int. Ed. Engl. , vol.21 , pp. 810
    • Ugi, I.1
  • 52
    • 0032580388 scopus 로고    scopus 로고
    • Ryu, I.; Yamazaki H.; Kusano, K.; Ogawa, A.; Sonoda, N. J. Am. Chem. Soc. 1991, 113, 8558. Keck, G. E.; Kordik, C. P. Tetrahedron Lett. 1993, 34, 6875. Russell, G. A.; Kulkarni, S. V. J. Org. Chem. 1993, 58, 2678. Lee, E.; Hur, C. U.; Rhee, Y. H.; Park, Y. C.; Kim, S. Y. J. Chem. Soc., Chem. Commun. 1993, 1466. For multicomponent radicalionic sequences see: Ishiyama, T.; Murata, M.; Suzuki, A.; Miyaura, N. J. Chem. Soc., Chem. Commun. 1995, 295. Takai, K.; Ueda, T.; Ikeda, N.; Moriwake, T. J. Org. Chem. 1996, 61, 7990. Tsunoi, S.; Ryu, I.; Yamasaki, S.; Tanaka, M.; Sonoda, N.; Komatsu, M. J. Chem. Soc., Chem. Commun. 1997, 1889. Takai, K.; Matsukawa, N.; Takahashi, A.; Fujii, T. Angew. Chem., Int. Ed. Engl. 1998, 37, 152. For notable nonradical multicomponent procedures involving isonitriles, see: Ugi, I. Angew. Chem., Int. Ed. Engl. 1982, 21, 810. Hanusch-Kompa, C.; Ugi, I. Tetrahedron Lett 1998, 39, 2725.
    • (1998) Tetrahedron Lett , vol.39 , pp. 2725
    • Hanusch-Kompa, C.1    Ugi, I.2
  • 61
    • 33947335838 scopus 로고
    • Under these conditions, the only side reaction is the isonitrile-nitrile self-isomerization (see: Casanova, J., Jr.; Werner, N. D.; Schuster, R. E. J. Org. Chem. 1966, 31, 3473). Since the isonitrile was present in a large excess, this reaction did not significantly affect the reaction outcome; however, it occurred quite remarkably only in the case of very long reaction times.
    • (1966) J. Org. Chem. , vol.31 , pp. 3473
    • Casanova J., Jr.1    Werner, N.D.2    Schuster, R.E.3
  • 62
    • 0000324228 scopus 로고
    • Isonitriles can be readily synthesized in very good yields by conversion of the corresponding amines into formamides and subsequent dehydration with phosphorus oxychloride (Wolber, E. K. A.; Schmittel, M.; Rüchardt, C. Chem. Ber. 1992, 125, 525).
    • (1992) Chem. Ber. , vol.125 , pp. 525
    • Wolber, E.K.A.1    Schmittel, M.2    Rüchardt, C.3
  • 63
    • 0342745331 scopus 로고    scopus 로고
    • note
    • This is consistent with the disulfide dissociation equilibrium, which is shifted towards the reagent by lowering the dilution. Synthetically useful reactions with photolytically generated sulfanyl radicals are therefore usually carried out at high dilutions.
  • 64
    • 0342310334 scopus 로고    scopus 로고
    • Leardini, R.; Nanni, D.; Zanardi, G. Eur. J. Org. Chem., 2000, 707. Analogous compounds were always obtained, generally in small amounts, in all of the subsequent reactions (see the Experimental Section).
    • (2000) Eur. J. Org. Chem. , pp. 707
    • Leardini, R.1    Nanni, D.2    Zanardi, G.3
  • 65
    • 0342745330 scopus 로고    scopus 로고
    • note
    • At least one fate was in principle conceivable-and expected-for imidoyl radical 10, i.e., six-membered cyclization onto the S-phenyl ring. In fact, it has been reported that imidoyls can give 1,6-ring closure onto aromatic rings, at least under oxidative conditions (see ref 4b). Under the present conditions this process is probably slow and it cannot compete with the α-fragmentation reaction giving back the isonitrile and the vinyl radical. Another possibility was the trap of radical 10 by another sulfanyl radical to give an N-bis(arylthio)methylene derivative. These products were actually obtained in low to moderate yields by reacting isonitriles and disulfides in the absence of alkynes or hydrogen donors, but they were never observed in the present study.
  • 66
    • 0343615297 scopus 로고    scopus 로고
    • note
    • Although data on the reversibility of radical addition to isonitriles-as well as homolytic fragmentations providing vinyl radicals-are not available in the literature, we found evidence that, at least with particularly stable radicals, this reaction is likely to be reversible (see ref 4j). Further support to a reversible radical addition to isonitriles will be reported below.
  • 67
    • 0343615296 scopus 로고    scopus 로고
    • note
    • All of these compounds have been commonly observed in the reactions between sulfanyl radicals and phenylacetylene (see ref 6a,b). However, since we did not use thiols as a source of sulfanyl radicals, we were quite astonished to obtain the hydrogen-abstraction product 4a in significant amounts. In our reaction, one of the possible hydrogen-atom sources could be tentatively identified as the cyclohexadienyl radicals involved in the formation of compound 5a.
  • 69
    • 0001696582 scopus 로고
    • It is worth noting that the literature has reported several examples of both sulfanyl radical addition to isonitriles (see refs 2a,d,g and 41) and imidoyl radical addition to alkynes (see ref 4a,c,h and: Dan-oh, Y.; Malta, H.; Uemura, J.; Watanabe, H.; Uneyama, K. Bull. Chem. Soc. Jpn. 1995, 68, 1497). Therefore, one could envisage an alternative reaction pathway including sulfanyl radical addition to 3 followed by reaction of the resulting α-thio-imidoyl radical with 2 to give a vinyl radical. Cyclization of the latter intermediate onto the isonitrile aryl ring could lead to a quinoline derivative. Nevertheless, this kind of product was never observed under any experimental conditions.
    • (1995) Bull. Chem. Soc. Jpn. , vol.68 , pp. 1497
    • Dan-oh, Y.1    Malta, H.2    Uemura, J.3    Watanabe, H.4    Uneyama, K.5
  • 71
    • 0343179919 scopus 로고    scopus 로고
    • note
    • A large excess of isonitrile is essential to trap the vinyl radical efficiently. When we used 5 mmol of 14, the yield dropped to 15%.
  • 72
    • 0001839873 scopus 로고
    • For the use of vinyl sulfides in organic synthesis, see: Cookson, R. C.; Parson, P. J. J. Chem. Soc., Chem. Commun. 1976, 990. Ager, D. J. J. Chem. Soc., Perkin Trans. 1 1983, 1131. Oshima, K.; Shimoji, K.; Takahashi, H.; Yamamoto, H.; Nozaki, H. J. Am. Chem. Soc. 1973, 95, 2694.
    • (1976) J. Chem. Soc., Chem. Commun. , pp. 990
    • Cookson, R.C.1    Parson, P.J.2
  • 73
    • 37049096930 scopus 로고
    • For the use of vinyl sulfides in organic synthesis, see: Cookson, R. C.; Parson, P. J. J. Chem. Soc., Chem. Commun. 1976, 990. Ager, D. J. J. Chem. Soc., Perkin Trans. 1 1983, 1131. Oshima, K.; Shimoji, K.; Takahashi, H.; Yamamoto, H.; Nozaki, H. J. Am. Chem. Soc. 1973, 95, 2694.
    • (1983) J. Chem. Soc., Perkin Trans. 1 , pp. 1131
    • Ager, D.J.1
  • 74
    • 0001107278 scopus 로고
    • For the use of vinyl sulfides in organic synthesis, see: Cookson, R. C.; Parson, P. J. J. Chem. Soc., Chem. Commun. 1976, 990. Ager, D. J. J. Chem. Soc., Perkin Trans. 1 1983, 1131. Oshima, K.; Shimoji, K.; Takahashi, H.; Yamamoto, H.; Nozaki, H. J. Am. Chem. Soc. 1973, 95, 2694.
    • (1973) J. Am. Chem. Soc. , vol.95 , pp. 2694
    • Oshima, K.1    Shimoji, K.2    Takahashi, H.3    Yamamoto, H.4    Nozaki, H.5
  • 75
    • 4243367179 scopus 로고
    • U.S. 3,271,408, 1966
    • Frazza, E. J.; Rappoport, L. U.S. 3,271,408, 1966; Chem. Abstr. 1966, 65, 16975a. Strong, J. G. U.S. 3,828,091, 1974; Chem. Abstr. 1974, 81, 105054w.
    • (1966) Chem. Abstr. , vol.65
    • Frazza, E.J.1    Rappoport, L.2
  • 76
    • 4243217131 scopus 로고
    • U.S. 3,828,091, 1974
    • Frazza, E. J.; Rappoport, L. U.S. 3,271,408, 1966; Chem. Abstr. 1966, 65, 16975a. Strong, J. G. U.S. 3,828,091, 1974; Chem. Abstr. 1974, 81, 105054w.
    • (1974) Chem. Abstr. , vol.81
    • Strong, J.G.1
  • 79
  • 82
    • 0000149943 scopus 로고
    • Kochi, J. K., Ed.; Wiley: New York
    • In all of the reactions described in this paper, the alkene having the alkyne-derived group and the sulfanyl moiety on the same side of the C-C double bond is more stable than the other isomer. This was suggested by the silica-catalyzed isomerization observed during column chromatography and it was definitively proved by photolyses of each of the (supposed) less stable isomers in the presence of the corresponding disulfide. After 24 h under these conditions, they gave almost complete conversion to the alkene with the opposite configuration, due to reversible sulfanyl radical addition to the C-C double bond. See: (a) Kice, J. L. In Free Radicals; Kochi, J. K., Ed.; Wiley: New York, 1973; Vol. II, pp 720-724. (b) Oswald, A. A.; Griesbaum, K.; Hudson, B. E., Jr.; Bregman, J. M. J. Am. Chem. Soc. 1964, 86, 2877. (c) Kampmeier, J. A.; Chen, G. J. Am. Chem. Soc. 1965, 87, 2608. (d) Heiba, E. I.; Dessau, R. M. J. Org. Chem. 1967, 32, 3837. It is worth noting that the most stable configuration is named E for the alkene obtained from phenylacetylene (and 1-hexyne, see below) but Z for that arising from trimethylsilylacetylene, due to the presence of the silicon atom instead of a carbon.
    • (1973) Free Radicals , vol.2 , pp. 720-724
    • Kice, J.L.1
  • 83
    • 0000706493 scopus 로고
    • In all of the reactions described in this paper, the alkene having the alkyne-derived group and the sulfanyl moiety on the same side of the C-C double bond is more stable than the other isomer. This was suggested by the silica-catalyzed isomerization observed during column chromatography and it was definitively proved by photolyses of each of the (supposed) less stable isomers in the presence of the corresponding disulfide. After 24 h under these conditions, they gave almost complete conversion to the alkene with the opposite configuration, due to reversible sulfanyl radical addition to the C-C double bond. See: (a) Kice, J. L. In Free Radicals; Kochi, J. K., Ed.; Wiley: New York, 1973; Vol. II, pp 720-724. (b) Oswald, A. A.; Griesbaum, K.; Hudson, B. E., Jr.; Bregman, J. M. J. Am. Chem. Soc. 1964, 86, 2877. (c) Kampmeier, J. A.; Chen, G. J. Am. Chem. Soc. 1965, 87, 2608. (d) Heiba, E. I.; Dessau, R. M. J. Org. Chem. 1967, 32, 3837. It is worth noting that the most stable configuration is named E for the alkene obtained from phenylacetylene (and 1-hexyne, see below) but Z for that arising from trimethylsilylacetylene, due to the presence of the silicon atom instead of a carbon.
    • (1964) J. Am. Chem. Soc. , vol.86 , pp. 2877
    • Oswald, A.A.1    Griesbaum, K.2    Hudson B.E., Jr.3    Bregman, J.M.4
  • 84
    • 33947483743 scopus 로고
    • In all of the reactions described in this paper, the alkene having the alkyne-derived group and the sulfanyl moiety on the same side of the C-C double bond is more stable than the other isomer. This was suggested by the silica-catalyzed isomerization observed during column chromatography and it was definitively proved by photolyses of each of the (supposed) less stable isomers in the presence of the corresponding disulfide. After 24 h under these conditions, they gave almost complete conversion to the alkene with the opposite configuration, due to reversible sulfanyl radical addition to the C-C double bond. See: (a) Kice, J. L. In Free Radicals; Kochi, J. K., Ed.; Wiley: New York, 1973; Vol. II, pp 720-724. (b) Oswald, A. A.; Griesbaum, K.; Hudson, B. E., Jr.; Bregman, J. M. J. Am. Chem. Soc. 1964, 86, 2877. (c) Kampmeier, J. A.; Chen, G. J. Am. Chem. Soc. 1965, 87, 2608. (d) Heiba, E. I.; Dessau, R. M. J. Org. Chem. 1967, 32, 3837. It is worth noting that the most stable configuration is named E for the alkene obtained from phenylacetylene (and 1-hexyne, see below) but Z for that arising from trimethylsilylacetylene, due to the presence of the silicon atom instead of a carbon.
    • (1965) J. Am. Chem. Soc. , vol.87 , pp. 2608
    • Kampmeier, J.A.1    Chen, G.2
  • 85
    • 33947335344 scopus 로고
    • In all of the reactions described in this paper, the alkene having the alkyne-derived group and the sulfanyl moiety on the same side of the C-C double bond is more stable than the other isomer. This was suggested by the silica-catalyzed isomerization observed during column chromatography and it was definitively proved by photolyses of each of the (supposed) less stable isomers in the presence of the corresponding disulfide. After 24 h under these conditions, they gave almost complete conversion to the alkene with the opposite configuration, due to reversible sulfanyl radical addition to the C-C double bond. See: (a) Kice, J. L. In Free Radicals; Kochi, J. K., Ed.; Wiley: New York, 1973; Vol. II, pp 720-724. (b) Oswald, A. A.; Griesbaum, K.; Hudson, B. E., Jr.; Bregman, J. M. J. Am. Chem. Soc. 1964, 86, 2877. (c) Kampmeier, J. A.; Chen, G. J. Am. Chem. Soc. 1965, 87, 2608. (d) Heiba, E. I.; Dessau, R. M. J. Org. Chem. 1967, 32, 3837. It is worth noting that the most stable configuration is named E for the alkene obtained from phenylacetylene (and 1-hexyne, see below) but Z for that arising from trimethylsilylacetylene, due to the presence of the silicon atom instead of a carbon.
    • (1967) J. Org. Chem. , vol.32 , pp. 3837
    • Heiba, E.I.1    Dessau, R.M.2
  • 96
    • 0342310320 scopus 로고    scopus 로고
    • note
    • Calculations of both molar volume and parachor for thiol and isocyano groups gave slightly greater values for the latter moiety. On this occasion, to avoid confusion, we would like to point out that the E/Z convention overturns passing from hydrogen abstraction products 4, 18, and 28 (ref 6a) to our nitriles.
  • 97
    • 0347861385 scopus 로고
    • and references therein
    • Sulfuranyl radicals are assumed to be true intermediates in intramolecular cyclizations onto diarylsulfide moieties; see: Leardini, R.; Pedulli, G. F.; Tundo, A.; Zanardi, G. J. Chem. Soc., Chem. Commun. 1985, 1390 and references therein. See also: Kampmeier, J. A.; Evans, T. R. J. Am. Chem. Soc. 1966, 88, 4096. Beckwith, A. L. J.; Boate, D. R. J. Chem. Soc., Chem. Commun. 1986, 189. Franz, J. A.; Roberts, D. H.; Ferris, K. F. J. Org. Chem. 1987, 52, 2256.
    • (1985) J. Chem. Soc., Chem. Commun. , pp. 1390
    • Leardini, R.1    Pedulli, G.F.2    Tundo, A.3    Zanardi, G.4
  • 98
    • 0000960118 scopus 로고
    • Sulfuranyl radicals are assumed to be true intermediates in intramolecular cyclizations onto diarylsulfide moieties; see: Leardini, R.; Pedulli, G. F.; Tundo, A.; Zanardi, G. J. Chem. Soc., Chem. Commun. 1985, 1390 and references therein. See also: Kampmeier, J. A.; Evans, T. R. J. Am. Chem. Soc. 1966, 88, 4096. Beckwith, A. L. J.; Boate, D. R. J. Chem. Soc., Chem. Commun. 1986, 189. Franz, J. A.; Roberts, D. H.; Ferris, K. F. J. Org. Chem. 1987, 52, 2256.
    • (1966) J. Am. Chem. Soc. , vol.88 , pp. 4096
    • Kampmeier, J.A.1    Evans, T.R.2
  • 99
    • 37049070167 scopus 로고
    • Sulfuranyl radicals are assumed to be true intermediates in intramolecular cyclizations onto diarylsulfide moieties; see: Leardini, R.; Pedulli, G. F.; Tundo, A.; Zanardi, G. J. Chem. Soc., Chem. Commun. 1985, 1390 and references therein. See also: Kampmeier, J. A.; Evans, T. R. J. Am. Chem. Soc. 1966, 88, 4096. Beckwith, A. L. J.; Boate, D. R. J. Chem. Soc., Chem. Commun. 1986, 189. Franz, J. A.; Roberts, D. H.; Ferris, K. F. J. Org. Chem. 1987, 52, 2256.
    • (1986) J. Chem. Soc., Chem. Commun. , pp. 189
    • Beckwith, A.L.J.1    Boate, D.R.2
  • 100
    • 0000548973 scopus 로고
    • Sulfuranyl radicals are assumed to be true intermediates in intramolecular cyclizations onto diarylsulfide moieties; see: Leardini, R.; Pedulli, G. F.; Tundo, A.; Zanardi, G. J. Chem. Soc., Chem. Commun. 1985, 1390 and references therein. See also: Kampmeier, J. A.; Evans, T. R. J. Am. Chem. Soc. 1966, 88, 4096. Beckwith, A. L. J.; Boate, D. R. J. Chem. Soc., Chem. Commun. 1986, 189. Franz, J. A.; Roberts, D. H.; Ferris, K. F. J. Org. Chem. 1987, 52, 2256.
    • (1987) J. Org. Chem. , vol.52 , pp. 2256
    • Franz, J.A.1    Roberts, D.H.2    Ferris, K.F.3
  • 102
    • 0032541694 scopus 로고    scopus 로고
    • De Boeck, B.; Herbert, N.; Pattenden, G. Tetrahedron Lett. 1998, 39, 6971. De Boeck, B.; Pattenden, G. Tetrahedron Lett. 1998, 39, 6975.
    • (1998) Tetrahedron Lett. , vol.39 , pp. 6975
    • De Boeck, B.1    Pattenden, G.2
  • 103
    • 0343179909 scopus 로고    scopus 로고
    • note
    • The choice of MNDO-d parameterization was made to better take into account the possible involvement of sulfur d-orbitals.
  • 119
    • 0342310299 scopus 로고    scopus 로고
    • note
    • +, 25), 216 (100), 200 (2), 186(9), 176(7), 140(10), 114 (9), 108 (15)].


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.