-
4
-
-
0000733286
-
-
Lu, H.; Prieskom, J.; Hupp, J. T. J. Am. Chem. Soc. 1993, 115, 4927.
-
(1993)
J. Am. Chem. Soc.
, vol.115
, pp. 4927
-
-
Lu, H.1
Prieskom, J.2
Hupp, J.T.3
-
5
-
-
0031209729
-
-
Hannappel, T.; Burfeindt, B.; Storck, W.: Willig, F. J. Phys. Chem. B 1997, 101, 6799.
-
(1997)
J. Phys. Chem. B
, vol.101
, pp. 6799
-
-
Burfeindt B1
Storck, W.H.T.2
Willig, F.3
-
6
-
-
33748394800
-
-
Tachibana, Y.; Moser, J.; Grätzel, M.; Klug, D. R.; Durrant, J. R. J. Phys. Chem. 1996, 700, 20056.
-
(1996)
J. Phys. Chem.
, vol.700
, pp. 20056
-
-
Tachibana, Y.1
Moser, J.2
Grätzel, M.3
Klug, D.R.4
Durrant, J.R.5
-
7
-
-
33845278357
-
-
Vlachopoulos, N.; Liska, P.; Augustynski, J.; Gratzel, M. J. Am. Chem. Soc. 1988, 110, 1216.
-
(1988)
J. Am. Chem. Soc.
, vol.110
, pp. 1216
-
-
Vlachopoulos, N.1
Liska, P.2
Augustynski, J.3
Gratzel, M.4
-
8
-
-
33845377525
-
-
Desilvestro, J.; Gratzel, M.; Kavan, L.; Moser, J. J. Am. Chem. Soc. 1985, 707, 2988.
-
(1985)
J. Am. Chem. Soc.
, vol.707
, pp. 2988
-
-
Desilvestro, J.1
Gratzel, M.2
Kavan, L.3
Moser, J.4
-
10
-
-
0001222003
-
-
and references therein.
-
Meyer, G. J. J. Chem. Educ. 1997, 74, 652 and references therein.
-
(1997)
J. Chem. Educ.
, vol.74
, pp. 652
-
-
Meyer, G.J.1
-
11
-
-
0000519579
-
-
Argazzi, R.; Bignozzi, C. A.; Heimer, T. A.; Castellano, F. N.; Meyer, G. J. J. Phys. Chem. B 1997, 707, 2591.
-
(1997)
J. Phys. Chem. B
, vol.707
, pp. 2591
-
-
Argazzi, R.1
Bignozzi, C.A.2
Heimer, T.A.3
Castellano, F.N.4
Meyer, G.J.5
-
13
-
-
0029637819
-
-
Vinodgopal, K.; Hua, K.; Dahlgren, R. L.; Lappin, A. G.; Patterson, L. K.; Kamat, P. V. J. Phys. Chem. 1995, 99, 10883.
-
(1995)
Phys. Chem.
, vol.99
, pp. 10883
-
-
Vinodgopal, K.1
Hua, K.2
Dahlgren, R.L.3
Lappin, A.G.4
Patterson, L.K.5
Kamat, P.V.J.6
-
15
-
-
1542797788
-
-
See, for example: Argazzi, R.; Bignozzi, C. A.; Heimer, T. A.; Castellano, F. N.; Meyer, G. J. J. Am. Chem. Soc. 1995, 777, 11815.
-
(1995)
J. Am. Chem. Soc.
, vol.777
, pp. 11815
-
-
See, F.E.1
Bignozzi, C.A.2
Heimer, T.A.3
Castellano, F.N.4
Meyer, G.J.A.R.5
-
18
-
-
85084623643
-
-
Two recent reports have convincingly argued that back ET can, under many conditions, be driving-force-wdependent (Hasselman; Meyer. J. Phys. Chem. B1999, 703,7671.
-
(1999)
J. Phys. Chem. B
, vol.703
, pp. 7671
-
-
Hasselman1
Meyer2
-
19
-
-
0001065383
-
-
Tachibana, et al. J. Phys. Chem. B 2000, 104, 1198). Briefly, overall rate control is ascribed to slow, thermal-neutral hopping between deep trap sites, with exoergic interfacial ET occurring as a fast following step. The trap-site-hopping mechanism may well be operative here at longer times and, perhaps, at lower incident light intensities.
-
(2000)
J. Phys. Chem. B
, vol.104
, pp. 1198
-
-
Tachibana1
-
21
-
-
0001181516
-
-
Preliminary, ambient temperature results for three of the seven systems examined have been noted: Yan, S. G.; Lyon, L. A.; Lemon, B. I.; Prieskom, J. S.; Hupp, J. T. J. Chem. Educ. 1997, 74, 657.
-
(1997)
Chem. Educ.
, vol.74
, pp. 657
-
-
Yan, S.G.1
Lyon, L.A.2
Lemon, B.I.3
Prieskom, J.S.4
Hupp, J.T.J.5
-
22
-
-
0033568722
-
-
For an example of inverted interfacial ET involving noncovalently bound polypyridyl ruthenium chromophores, see: Dang, X.; Hupp, J. T. J. Am. Chem. Soc. 1999, 727, 8399.
-
(1999)
J. Am. Chem. Soc.
, vol.727
, pp. 8399
-
-
Dang, X.1
Hupp, J.T.2
-
27
-
-
0343590534
-
-
Pendler, J. H., Ed.; Wiley-VCH: New York
-
Lemon, B. L; Lyon, L. A.; Hupp, J. T. In Nanoparticles and Nanostructured Films; Pendler, J. H., Ed.; Wiley-VCH: New York, 1998; pp 335-348.
-
(1998)
Nanoparticles and Nanostructured Films
, pp. 335-348
-
-
Lemon, B.L.1
Lyon, L.A.2
Hupp, J.T.3
-
28
-
-
33751553257
-
-
O'Regan, B.; Moser, J.; Anderson, M.; Gratzel, M.J. Phys. Chem. 1990, 94, 8720.
-
(1990)
Phys. Chem.
, vol.94
, pp. 8720
-
-
O'Regan, B.1
Moser, J.2
Anderson, M.3
Gratzel, M.J.4
-
30
-
-
0000711102
-
-
Black, D. S. C.; Deacon, G. B.; Thomas, N. C. Aust. J. Chem. 1982, 35, 2445.
-
(1982)
Aust. J. Chem.
, vol.35
, pp. 2445
-
-
Black, D.S.C.1
Deacon, G.B.2
Thomas, N.C.3
-
31
-
-
0038961044
-
-
Black, D. S. C.; Deacon, G. B.; Thomas, N. C. Inorg. Chim. Acta 1982, 65, 75.
-
(1982)
Inorg. Chim. Acta
, vol.65
, pp. 75
-
-
Black, D.S.C.1
Deacon, G.B.2
Thomas, N.C.3
-
35
-
-
33847798894
-
-
Lin, C. T.; Böttcher, W.; Chou, M.; Creutz, C.; Sutin, N. J. Am. Chem. Soc. 1976, 98, 6536.
-
(1976)
J. Am. Chem. Soc.
, vol.98
, pp. 6536
-
-
Lin, C.T.1
Böttcher, W.2
Chou, M.3
Creutz, C.4
Sutin, N.5
-
36
-
-
85087997790
-
-
note
-
-1.
-
-
-
-
39
-
-
33645918737
-
-
While it would be difficult to argue that the ki values for complexes 2,3, and 4 are meaningfully different for the data set summarized in Table 2 and Figure 2, activation enthalpy measurements (Table 3 and Figure 4) clearly show that their reactivities can be differentiated and that the differences correlate with the driving force.
-
While it would be difficult to argue that the ki values for complexes 2,3, and 4 are meaningfully different for the data set summarized in Table 2 and Figure 2, activation enthalpy measurements (Table 3 and Figure 4) clearly show that their reactivities can be differentiated and that the differences correlate with the driving force.
-
-
-
-
40
-
-
33646440382
-
-
If no high-frequency vibrational modes are involved (possibly the case here, given the metal-centered nature of the reaction), then modest activation enthalpies would be predicted even under inverted conditions. For illustrative calculations, see: Brunschwig, B. S.; Sutin, N. Comments Inorg. Chem. 1987, 6, 209; see also ref 21.
-
(1987)
Comments Inorg. Chem.
, vol.6
, pp. 209
-
-
Brunschwig, B.S.1
Sutin, N.2
-
41
-
-
85022306480
-
-
3+ reduction at a titanium dioxide/solution interface could be as small as 0.2 eV. If image stabilization effects are absent, then λ should double. If, in addition, lattice reorganizational effects are included (ca. 0.1 eV based on resonance Raman studies (Blackbourn, R. L.; Johnson, C. S.; Hupp, J. T. J. Am. Chem. Soc. 1991, 775, 1060)), λ is likely to be at least 0.5 eV. Very recently, however, in an extension and expansion of the work on noncovalently bound dyes, described in ref 21, we have obtained from the maxima in the plots of rate vs driving force, and activation enthalpy vs driving force, estimated reorganization energies exceeding 1 eV (Gaal, D. A.; Hupp, J. T. Manuscript in preparation).
-
(1991)
J. Am. Chem. Soc.
, vol.775
, pp. 1060
-
-
Blackbourn, R.L.1
Johnson, C.S.2
Hupp, J.T.3
-
42
-
-
33645908965
-
-
One possibility would be that back ET occurs from deep traps, such that the true driving force is much smaller than the driving force obtained from the difference in energy between the conduction band edge and the dye's formal potential. Direct measurements of the overall back reaction thermodynamics via time-resolved photoacoustic spectroscopy show, however, that the driving forces are not anomalously small (Leytner, S.; Hupp, J. T. Unpublished studies).
-
One possibility would be that back ET occurs from deep traps, such that the true driving force is much smaller than the driving force obtained from the difference in energy between the conduction band edge and the dye's formal potential. Direct measurements of the overall back reaction thermodynamics via time-resolved photoacoustic spectroscopy show, however, that the driving forces are not anomalously small (Leytner, S.; Hupp, J. T. Unpublished studies).
-
-
-
-
43
-
-
85087998799
-
-
2, where the reactions indeed do appear to involve transfer directly from the bottom of the semiconductor's conduction band (see ref 21).
-
2, where the reactions indeed do appear to involve transfer directly from the bottom of the semiconductor's conduction band (see ref 21).
-
-
-
-
44
-
-
0029377923
-
-
Huang, S. Y.; Kavan, L.; Exnar, I.; Grätzel, M. J. Electrochem. Soc. 1995, 142, L142.
-
(1995)
J. Electrochem. Soc.
, vol.142
-
-
Huang, S.Y.1
Kavan, L.2
Exnar, I.3
Grätzel, M.4
-
45
-
-
0001866201
-
-
Kavan, L.; Kratochvilova, K.; Gr̈tzel, M. J. Electroanal. Chem. 1995, 394, 93.
-
(1995)
Electroanal. Chem.
, vol.394
, pp. 93
-
-
Kavan, L.1
Kratochvilova, K.2
Gr̈tzel, M.J.3
-
46
-
-
0030082220
-
-
Kavan, L.; Gr̈tzel, M.; Rathousky, J.; Zukal, A. J. Electrochem. Soc. 1996,143, 394.
-
(1996)
J. Electrochem. Soc.
, vol.143
, pp. 394
-
-
Kavan, L.1
Gr̈tzel, M.2
Rathousky, J.3
Zukal, A.4
-
48
-
-
33645939065
-
-
note
-
+ availibility would likely create significant short-time diffusive kinetic constraints even in concentrated (say, 0.5 M) electrolyte solutions, thereby rendering Scheme 1 less than fully applicable. Additionally, there is evidence to suggest that the "fast" kinetic component studied here is absent or greatly diminished in nonhydroxylic solvents under conditions of low incident light intensity (G. J. Meyer, private communication). If the observation is true for all dyes in nonhydroxylic solvents, then Scheme 1 would be significant only in aqueous solar cells or only in the context of fundamental investigations of interfacial electron transfer.
-
-
-
|