-
2
-
-
85120120355
-
-
G.C. Atkenson, A.W. Moore, S. Schaal, Locally weighted learning [http://funapp.cs.bilkent.edu.tr], 1996.
-
-
-
-
3
-
-
85120114931
-
-
C. Blake, E. Keogh, C.J. Merz, UCI Repository of machine learning databases [http://www.ics.uci.edu/~mlearn/MLRepository.html] Irvine, CA, University of California, Department of Information and Computer Science, 1998
-
-
-
-
7
-
-
85120147114
-
-
R. Duda P.E. Hart Pattern Classification and Scene Analysis 1973 Wiley New York
-
(1973)
-
-
Duda, R.1
Hart, P.E.2
-
8
-
-
0002432565
-
Multivariate adaptive regression splines
-
J.H. Friedman Multivariate adaptive regression splines The Annals of Statistics 19 1 1991 1 141
-
(1991)
The Annals of Statistics
, vol.19
, Issue.1
, pp. 1-141
-
-
Friedman, J.H.1
-
10
-
-
85120120845
-
-
J.H. Friedman, Local learning based on recursive covering, Department of Statistics, Stanford University [ftp://stat.stanford.edu/pub/friedman/dart.ps.Z], 1996.
-
-
-
-
11
-
-
85120126589
-
-
H.A. Guvenir, Bilkent FunApp repository [http://funapp.cs.bilkent.edu.tr], Bilkent University, Department of Computer Engineering, Ankara, 2000.
-
-
-
-
12
-
-
0031380978
-
Knowing what doesn't matter: exploiting the omission of irrelevant data
-
R. Greiner A.J. Grove A. Kogan Knowing what doesn't matter: exploiting the omission of irrelevant data Artificial Intelligence 97 1997 345 380
-
(1997)
Artificial Intelligence
, vol.97
, pp. 345-380
-
-
Greiner, R.1
Grove, A.J.2
Kogan, A.3
-
13
-
-
0030130153
-
Classification by feature partitioning
-
H.A. Guvenir İ. Sirin Classification by feature partitioning Machine Learning 23 1996 47 67
-
(1996)
Machine Learning
, vol.23
, pp. 47-67
-
-
Guvenir, H.A.1
Sirin, İ.2
-
14
-
-
0032127185
-
Learning differential diagnosis of erythemato squamous diseases using voting feature intervals
-
H.A. Guvenir G. Demiroz N. Ilter Learning differential diagnosis of erythemato squamous diseases using voting feature intervals Artificial Intelligence in Medicine 13 1998 147 165
-
(1998)
Artificial Intelligence in Medicine
, vol.13
, pp. 147-165
-
-
Guvenir, H.A.1
Demiroz, G.2
Ilter, N.3
-
15
-
-
0027580356
-
Very simple classification rules perform well on most commonly used datasets
-
R.C. Holte Very simple classification rules perform well on most commonly used datasets Machine Learning 11 1993 63 91
-
(1993)
Machine Learning
, vol.11
, pp. 63-91
-
-
Holte, R.C.1
-
16
-
-
0002714595
-
Employing linear regression in regression tree leaves
-
A. Karalic Employing linear regression in regression tree leaves B. Newmann Proceedings of ECAI’92 Vienna, Austria 1992 440 441
-
(1992)
, pp. 440-441
-
-
Karalic, A.1
-
17
-
-
85120136316
-
-
L. Kaufman P.J. Rousseeuw Finding Groups in Data—An Introduction to Cluster Analysis Wiley Series in Probability and Mathematical Statistics 1990
-
(1990)
-
-
Kaufman, L.1
Rousseeuw, P.J.2
-
19
-
-
85120118210
-
-
J.H. Mathews Numerical Methods for Computer Science, Engineering and Mathematics 1987 Prentice-Hall Englewood Cliffs, NJ
-
(1987)
-
-
Mathews, J.H.1
-
20
-
-
85120133981
-
-
T.M. Mitchell Machine Learning 1997 McGraw Hill New York
-
(1997)
-
-
Mitchell, T.M.1
-
21
-
-
85120143220
-
-
J.R. Quinlan, Learning with continuous classes, in: Adams and Sterling (Eds.), Proceedings, AI’92, 1992, pp. 343–348.
-
-
-
-
22
-
-
85120108346
-
-
J. Rawlings Applied Regression Analysis, A Research Tool 1988 Wadsworth Belmont, CA
-
(1988)
-
-
Rawlings, J.1
-
23
-
-
85120103717
-
-
SPSS Sample Data Sets [ftp://ftp.spss.com/pub/spss/sample/datasets/], 1999.
-
-
-
-
24
-
-
0040452732
-
Optimized rule induction
-
S. Weiss N. Indurkhya Optimized rule induction IEEE Expert 8 6 1993 61 69
-
(1993)
IEEE Expert
, vol.8
, Issue.6
, pp. 61-69
-
-
Weiss, S.1
Indurkhya, N.2
-
26
-
-
85120113730
-
-
S. Weiss N. Indurkhya Predictive Data Mining: A Practical Guide 1998 Morgan Kaufmann San Francisco
-
(1998)
-
-
Weiss, S.1
Indurkhya, N.2
|