메뉴 건너뛰기




Volumn 97, Issue 1-2, 1997, Pages 345-380

Knowing what doesn't matter: Exploiting the omission of irrelevant data

Author keywords

Adversarial noise; Blocked attributes; Decision trees; Diagnosis; DNF; Irrelevant values; Learnability; Theory revision

Indexed keywords

DECISION THEORY; LEARNING ALGORITHMS; LEARNING SYSTEMS; MATHEMATICAL MODELS; TREES (MATHEMATICS);

EID: 0031380978     PISSN: 00043702     EISSN: None     Source Type: Journal    
DOI: 10.1016/s0004-3702(97)00048-9     Document Type: Article
Times cited : (16)

References (38)
  • 1
    • 0026999435 scopus 로고
    • Computational learning theory: Survey and selected bibliography
    • ACM Press, New York
    • D. Angluin, Computational learning theory: survey and selected bibliography, in: Proceedings 24th Annual ACM Symposium on Theory of Computing (ACM Press, New York, 1992) 351-369.
    • (1992) Proceedings 24th Annual ACM Symposium on Theory of Computing , pp. 351-369
    • Angluin, D.1
  • 2
    • 0007563290 scopus 로고
    • Learning boolean functions in an infinite attribute space
    • A. Blum, Learning boolean functions in an infinite attribute space, Machine Learning 9 (4) (1992) 373-386.
    • (1992) Machine Learning , vol.9 , Issue.4 , pp. 373-386
    • Blum, A.1
  • 3
    • 0029254047 scopus 로고
    • Learning in the presence of finitely or infinitely many irrelevant attributes
    • A. Blum, L. Hellerstein and N. Littlestone, Learning in the presence of finitely or infinitely many irrelevant attributes, J. Comput. System Sci. 50 (1) (1995) 32-40.
    • (1995) J. Comput. System Sci. , vol.50 , Issue.1 , pp. 32-40
    • Blum, A.1    Hellerstein, L.2    Littlestone, N.3
  • 5
    • 0000182415 scopus 로고
    • A measure of asymptotic efficiency for tests of a hypothesis based on the sums of observations
    • H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sums of observations, Ann. Math. Statist. 23 (1952) 493-507.
    • (1952) Ann. Math. Statist. , vol.23 , pp. 493-507
    • Chernoff, H.1
  • 6
    • 0024735093 scopus 로고
    • Learning decision trees from random examples
    • A. Ehrenfeucht and D. Haussler, Learning decision trees from random examples, Inform. and Comput. 82 (1989) 231-246.
    • (1989) Inform. and Comput. , vol.82 , pp. 231-246
    • Ehrenfeucht, A.1    Haussler, D.2
  • 8
    • 0013411860 scopus 로고
    • Can PAC learning algorithms tolerate random attribute noise?
    • S.A. Goldman and R.A. Sloan, Can PAC learning algorithms tolerate random attribute noise?, Algorithmica 14 (1) (1995).
    • (1995) Algorithmica , vol.14 , Issue.1
    • Goldman, S.A.1    Sloan, R.A.2
  • 9
    • 0042622868 scopus 로고
    • The complexity of theory revision
    • Montreal, Que.
    • R. Greiner, The complexity of theory revision, in: Proceedings IJCAI-95, Montreal, Que. (1995).
    • (1995) Proceedings IJCAI-95
    • Greiner, R.1
  • 12
  • 13
    • 0027640858 scopus 로고
    • Learning in the presence of malicious errors
    • M. Kearns and M. Li, Learning in the presence of malicious errors, SIAM J. Comput. 22 (1993) 807-837.
    • (1993) SIAM J. Comput. , vol.22 , pp. 807-837
    • Kearns, M.1    Li, M.2
  • 20
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
    • N. Littlestone, Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm, Machine Learning J. 2 (1988) 285-318.
    • (1988) Machine Learning J. , vol.2 , pp. 285-318
    • Littlestone, N.1
  • 21
    • 0000511449 scopus 로고
    • Redundant noisy attributes, attribute errors and linear threshold learning using Winnow
    • Morgan Kaufmann, San Mateo, CA
    • N. Littlestone, Redundant noisy attributes, attribute errors and linear threshold learning using Winnow, in: Proceedings 4th Annual Workshop on Computational Learning Theory (Morgan Kaufmann, San Mateo, CA, 1991) 147-156.
    • (1991) Proceedings 4th Annual Workshop on Computational Learning Theory , pp. 147-156
    • Littlestone, N.1
  • 22
    • 0028531585 scopus 로고
    • Quantifying prior determination knowledge using the PAC learning model
    • S. Mahadevan and P. Tadepalli, Quantifying prior determination knowledge using the PAC learning model, Machine Learning 17 (1994) 69-105.
    • (1994) Machine Learning , vol.17 , pp. 69-105
    • Mahadevan, S.1    Tadepalli, P.2
  • 24
    • 84957053329 scopus 로고
    • Machine invention of first order predicates by inverting resolution
    • Ann Arbor, MI Morgan Kaufmann, Los Altos, CA
    • S. Muggleton and W. Buntine, Machine invention of first order predicates by inverting resolution, in: Proceedings 5th International Conference on Machine Learning, Ann Arbor, MI (Morgan Kaufmann, Los Altos, CA, 1988) 339-351.
    • (1988) Proceedings 5th International Conference on Machine Learning , pp. 339-351
    • Muggleton, S.1    Buntine, W.2
  • 25
    • 84985051834 scopus 로고
    • Changing the rules: A comprehensive approach to theory refinement
    • Boston, MA
    • D. Ourston and R.J. Mooney, Changing the rules: a comprehensive approach to theory refinement, in: Proceedings AAAI-90, Boston, MA (1990) 815-820.
    • (1990) Proceedings AAAI-90 , pp. 815-820
    • Ourston, D.1    Mooney, R.J.2
  • 26
    • 0025494269 scopus 로고
    • Concept learning and heuristic classification in weak-theory domains
    • B.W. Porter, R. Bareiss and R.C. Holte, Concept learning and heuristic classification in weak-theory domains, Artificial Intelligence 45 (1-2) (1990) 229-263.
    • (1990) Artificial Intelligence , vol.45 , Issue.1-2 , pp. 229-263
    • Porter, B.W.1    Bareiss, R.2    Holte, R.C.3
  • 28
    • 1442267080 scopus 로고
    • Learning decision lists
    • R.L. Rivest, Learning decision lists, Machine Learning 2 (3) (1987) 229-246.
    • (1987) Machine Learning , vol.2 , Issue.3 , pp. 229-246
    • Rivest, R.L.1
  • 36
    • 0000865580 scopus 로고
    • Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm
    • P.D. Turney, Cost-sensitive classification: empirical evaluation of a hybrid genetic decision tree induction algorithm, J. Artif. Intell. Research 2 (1995) 369-409.
    • (1995) J. Artif. Intell. Research , vol.2 , pp. 369-409
    • Turney, P.D.1
  • 37
    • 0021518106 scopus 로고
    • A theory of the learnable
    • L.G. Valiant, A theory of the learnable, Comm. ACM 27 (11) (1984) 1134-1142.
    • (1984) Comm. ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.G.1
  • 38
    • 0009451773 scopus 로고
    • A methodology for evaluating theory revision systems: Results with Audrey II
    • Chambery, France
    • J. Wogulis and M.J. Pazzani, A methodology for evaluating theory revision systems: results with Audrey II, in: Proceedings IJCAI-93, Chambery, France (1993) 1128-1134.
    • (1993) Proceedings IJCAI-93 , pp. 1128-1134
    • Wogulis, J.1    Pazzani, M.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.