메뉴 건너뛰기




Volumn 13, Issue 3, 1998, Pages 147-165

Learning differential diagnosis of erythemato-squamous diseases using voting feature intervals

Author keywords

Differential diagnosis; Erythemato squamous; Machine learning; Voting feature intervals

Indexed keywords

ALGORITHMS; DIAGNOSIS; DISEASES;

EID: 0032127185     PISSN: 09333657     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0933-3657(98)00028-1     Document Type: Article
Times cited : (207)

References (15)
  • 2
    • 0010455575 scopus 로고
    • K nearest neighbor classification on feature projections
    • Akkuş A, Güvenir HA. K Nearest Neighbor classification on Feature Projections. In: Proc. ICML' 96, 1995:12-19.
    • (1995) Proc. ICML' 96 , pp. 12-19
    • Akkuş, A.1    Güvenir, H.A.2
  • 3
    • 0028496468 scopus 로고
    • Learning boolean concepts in the presence of many irrelevant features
    • Almnallim H, Dietterich TG Learning boolean concepts in the presence of many irrelevant features. Artif Intell. 69:1994;279-305.
    • (1994) Artif Intell , vol.69 , pp. 279-305
    • Almnallim, H.1    Dietterich, T.G.2
  • 4
    • 34250080806 scopus 로고
    • A Weighted Nearest Neighbor Algorithm for Learning with Symbolic Features
    • Cost S, Salzberg S A Weighted Nearest Neighbor Algorithm for Learning with Symbolic Features. Mach Learn. 10:1993;57-78.
    • (1993) Mach Learn , vol.10 , pp. 57-78
    • Cost, S.1    Salzberg, S.2
  • 5
    • 0002949602 scopus 로고    scopus 로고
    • Genetic algorithms to learn feature weights for the nearest neighbor algorithm
    • Demiröz G, Güvenir HA. Genetic Algorithms to Learn Feature Weights for the Nearest Neighbor Algorithm. In: Proc BENELEARN-96, 1996:117-126.
    • (1996) Proc BENELEARN-96 , pp. 117-126
    • Demiröz, G.1    Güvenir, H.A.2
  • 8
    • 0030130153 scopus 로고    scopus 로고
    • Classification by Feature Partitioning
    • Güvenir HA, Şirin I. Classification by Feature Partitioning. Mach Learn. 23:1996;47-67.
    • (1996) Mach Learn , vol.23 , pp. 47-67
    • Güvenir, H.A.1    Şirin, I.2
  • 9
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • Holte RC Very simple classification rules perform well on most commonly used datasets. Mach Learn. 11:1993;63-91.
    • (1993) Mach Learn , vol.11 , pp. 63-91
    • Holte, R.C.1
  • 10
    • 0027682531 scopus 로고
    • Inductive and Bayesian Learning in Medical Diagnosis
    • Kononenko I Inductive and Bayesian Learning in Medical Diagnosis. Appl Artif Intell. 7:1993;317-337.
    • (1993) Appl Artif Intell , vol.7 , pp. 317-337
    • Kononenko, I.1
  • 11
    • 0025803268 scopus 로고
    • Information-Based Evaluation Criterion for classifier's Performance
    • Kononenko I, Bratko I Information-Based Evaluation Criterion for classifier's Performance. Mach Learn. 6:1991;67-80.
    • (1991) Mach Learn , vol.6 , pp. 67-80
    • Kononenko, I.1    Bratko, I.2
  • 13
    • 0342711245 scopus 로고    scopus 로고
    • Case-based learning of plans and goal states in medical diagnosis
    • Lopez B, Plaza E Case-based learning of plans and goal states in medical diagnosis. Artif Intell Med. 6:1997;29-60.
    • (1997) Artif Intell Med , vol.6 , pp. 29-60
    • Lopez, B.1    Plaza, E.2
  • 15
    • 85152587599 scopus 로고
    • Learning categorical decision criteria in biomedical domains
    • University of Michigan, Ann Arbor
    • Spackman AK. Learning Categorical Decision Criteria in Biomedical Domains. In: Proc 5th International Conference on Machine Learning. University of Michigan, Ann Arbor, 1988:36-46.
    • (1988) Proc 5th International Conference on Machine Learning. , pp. 36-46
    • Spackman, A.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.