-
3
-
-
0029946861
-
-
Asai A., Hara M., Kakita S., Kanda Y., Yoshida M., Saito H., Saitoh Y. J. Am. Chem. Soc. 118:1996;6802.
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 6802
-
-
Asai, A.1
Hara, M.2
Kakita, S.3
Kanda, Y.4
Yoshida, M.5
Saito, H.6
Saitoh, Y.7
-
9
-
-
0026793016
-
-
Kohama Y., Iida K., Semba T., Mimura T., Inada A., Tanaka K., Nakanishi T. Chem. Pharm. Bull. 40:1992;2210.
-
(1992)
Chem. Pharm. Bull.
, vol.40
, pp. 2210
-
-
Kohama, Y.1
Iida, K.2
Semba, T.3
Mimura, T.4
Inada, A.5
Tanaka, K.6
Nakanishi, T.7
-
10
-
-
0025161168
-
-
Iyer R.P., Phillips L.R., Egan W., Regan J.B., Beaucage S.L. J. Org. Chem. 55:1990;4693.
-
(1990)
J. Org. Chem.
, vol.55
, pp. 4693
-
-
Iyer, R.P.1
Phillips, L.R.2
Egan, W.3
Regan, J.B.4
Beaucage, S.L.5
-
14
-
-
0021341261
-
-
In systems where addition of SOD inhibits DNA damage it is likely due to the fact that superoxide radical serves as a necessary reducing agent for trace metals involved in the Fenton reaction. In systems where other reducing agents (e.g., thiols) are present, addition of SOD can actually increase DNA-damage efficiency. See, for example:
-
In systems where addition of SOD inhibits DNA damage it is likely due to the fact that superoxide radical serves as a necessary reducing agent for trace metals involved in the Fenton reaction. In systems where other reducing agents (e.g., thiols) are present, addition of SOD can actually increase DNA-damage efficiency. See, for example: Eliot, H.; Gianni, L.; Myers, C. Biochemistry 1984, 23, 928. Parraga, A.; Orozco, M.; Portugal, J. Eur. J. Biochem. 1992, 208, 227. Weglarz, L.; Bartosz, G. Int. J. Biochem. 1991, 23, 663. Nagai, K.; Hecht, S. M. J. Biol. Chem. 1991, 266, 23994.
-
(1984)
Biochemistry
, vol.23
, pp. 928
-
-
Eliot, H.1
Gianni, L.2
Myers, C.3
-
15
-
-
0026783763
-
-
In systems where addition of SOD inhibits DNA damage it is likely due to the fact that superoxide radical serves as a necessary reducing agent for trace metals involved in the Fenton reaction. In systems where other reducing agents (e.g., thiols) are present, addition of SOD can actually increase DNA-damage efficiency. See, for example: Eliot, H.; Gianni, L.; Myers, C. Biochemistry 1984, 23, 928. Parraga, A.; Orozco, M.; Portugal, J. Eur. J. Biochem. 1992, 208, 227. Weglarz, L.; Bartosz, G. Int. J. Biochem. 1991, 23, 663. Nagai, K.; Hecht, S. M. J. Biol. Chem. 1991, 266, 23994.
-
(1992)
Eur. J. Biochem.
, vol.208
, pp. 227
-
-
Parraga, A.1
Orozco, M.2
Portugal, J.3
-
16
-
-
0026100510
-
-
In systems where addition of SOD inhibits DNA damage it is likely due to the fact that superoxide radical serves as a necessary reducing agent for trace metals involved in the Fenton reaction. In systems where other reducing agents (e.g., thiols) are present, addition of SOD can actually increase DNA-damage efficiency. See, for example: Eliot, H.; Gianni, L.; Myers, C. Biochemistry 1984, 23, 928. Parraga, A.; Orozco, M.; Portugal, J. Eur. J. Biochem. 1992, 208, 227. Weglarz, L.; Bartosz, G. Int. J. Biochem. 1991, 23, 663. Nagai, K.; Hecht, S. M. J. Biol. Chem. 1991, 266, 23994.
-
(1991)
Int. J. Biochem.
, vol.23
, pp. 663
-
-
Weglarz, L.1
Bartosz, G.2
-
17
-
-
0026344368
-
-
In systems where addition of SOD inhibits DNA damage it is likely due to the fact that superoxide radical serves as a necessary reducing agent for trace metals involved in the Fenton reaction. In systems where other reducing agents (e.g., thiols) are present, addition of SOD can actually increase DNA-damage efficiency. See, for example: Eliot, H.; Gianni, L.; Myers, C. Biochemistry 1984, 23, 928. Parraga, A.; Orozco, M.; Portugal, J. Eur. J. Biochem. 1992, 208, 227. Weglarz, L.; Bartosz, G. Int. J. Biochem. 1991, 23, 663. Nagai, K.; Hecht, S. M. J. Biol. Chem. 1991, 266, 23994.
-
(1991)
J. Biol. Chem.
, vol.266
, pp. 23994
-
-
Nagai, K.1
Hecht, S.M.2
-
19
-
-
0343898665
-
-
Compound 11 undergoes hydrolysis slowly compared to thiolysis. In the DNA-cleavage reactions reported here, 11 was the final component added to thiol-containing reaction mixtures to ensure that thiol-triggered chemistry predominates
-
Compound 11 undergoes hydrolysis slowly compared to thiolysis. In the DNA-cleavage reactions reported here, 11 was the final component added to thiol-containing reaction mixtures to ensure that thiol-triggered chemistry predominates.
-
-
-
-
20
-
-
0343898644
-
-
Note
-
4,9 Obtained as a mixture where n=0, 1, and 2 (90:9:1, 558 mg, 3.6 mmol).
-
-
-
-
21
-
-
25544447286
-
-
Lüdersdorf, R.; Martens, J.; Pakzad, B.; Praefcke, K. Justus Liebig Ann. Chem. 1992, 1977.
-
(1992)
Justus Liebig Ann. Chem.
, pp. 1977
-
-
Lüdersdorf, R.1
Martens, J.2
Pakzad, B.3
Praefcke, K.4
-
22
-
-
0033556669
-
-
Ozaki S., Yang H.-J., Matsui T., Goto Y., Watanabe Y. Tetrahedron: Asymmetry. 10:1999;183.
-
(1999)
Tetrahedron: Asymmetry
, vol.10
, pp. 183
-
-
Ozaki, S.1
Yang, H.-J.2
Matsui, T.3
Goto, Y.4
Watanabe, Y.5
-
29
-
-
0342592941
-
-
10
-
10.
-
-
-
-
30
-
-
0342592938
-
-
22 and would not yield 'activated' leinamycin (2).
-
22 and would not yield 'activated' leinamycin (2).
-
-
-
|