메뉴 건너뛰기




Volumn 6, Issue 3, 2000, Pages 434-448

In vivo selection of lethal mutations reveals two functional domains in arginyl-tRNA synthetase

Author keywords

Aminoacyl tRNA synthetase; Genetic screen; Kinetic analysis; Mutants; Substrate recognition

Indexed keywords

ARGININE; ARGININE TRANSFER RNA LIGASE; TRANSFER RNA;

EID: 0034106754     PISSN: 13558382     EISSN: None     Source Type: Journal    
DOI: 10.1017/S1355838200992331     Document Type: Article
Times cited : (18)

References (57)
  • 1
    • 0033617251 scopus 로고    scopus 로고
    • Active site mapping of yeast aspartyl-tRNA synthetase by in vivo selection of enzyme mutations lethal for cell growth
    • Ador L, Camasses A, Erbs P, Cavarelli J, Moras D, Gangloff J, Eriani G. 1999. Active site mapping of yeast aspartyl-tRNA synthetase by in vivo selection of enzyme mutations lethal for cell growth. J Mol Biol 208:231-242.
    • (1999) J Mol Biol , vol.208 , pp. 231-242
    • Ador, L.1    Camasses, A.2    Erbs, P.3    Cavarelli, J.4    Moras, D.5    Gangloff, J.6    Eriani, G.7
  • 2
    • 0001483397 scopus 로고
    • Purification and substrate specificity of arginyl-ribonucleic acid synthetase from rat liver
    • Allende C, Allende J. 1964. Purification and substrate specificity of arginyl-ribonucleic acid synthetase from rat liver. J Biol Chem 239:1102-1106.
    • (1964) J Biol Chem , vol.239 , pp. 1102-1106
    • Allende, C.1    Allende, J.2
  • 3
    • 0023777735 scopus 로고
    • Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in E. coli
    • Aman E, Ochs B, Abel KJ. 1988. Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in E. coli. Gene 69:301-305.
    • (1988) Gene , vol.69 , pp. 301-305
    • Aman, E.1    Ochs, B.2    Abel, K.J.3
  • 5
    • 0343447611 scopus 로고
    • Studies on the incorporation of arginine into acceptor RNA of Escherichia coli
    • Goodwin T, Lindberg O, eds. London: Academic Press
    • Boman H, Boman I, Maas W. 1961. Studies on the incorporation of arginine into acceptor RNA of Escherichia coli. In: Goodwin T, Lindberg O, eds. Biological structure and function, vol. 1. London: Academic Press. pp 297-308.
    • (1961) Biological Structure and Function , vol.1 , pp. 297-308
    • Boman, H.1    Boman, I.2    Maas, W.3
  • 6
    • 0024406896 scopus 로고
    • Structure of tyrosyl-tRNA synthetase refined at 2.3 Å resolution. Interaction of the enzyme with tyrosyl adenylate intermediate
    • Brick P, Bhat TN, Blow DM. 1989. Structure of tyrosyl-tRNA synthetase refined at 2.3 Å resolution. Interaction of the enzyme with tyrosyl adenylate intermediate. J Mol Biol 200:83-98.
    • (1989) J Mol Biol , vol.200 , pp. 83-98
    • Brick, P.1    Bhat, T.N.2    Blow, D.M.3
  • 7
    • 0025633837 scopus 로고
    • Crystallographic study at 2.5 Å resolution of the interaction of methionyl-tRNA synthetase from Escherichia coli with ATP
    • Brunie S, Zelwer C, Risler JL. 1990. Crystallographic study at 2.5 Å resolution of the interaction of methionyl-tRNA synthetase from Escherichia coli with ATP. J Mol Biol 216:411-424.
    • (1990) J Mol Biol , vol.216 , pp. 411-424
    • Brunie, S.1    Zelwer, C.2    Risler, J.L.3
  • 8
    • 0021504608 scopus 로고
    • The use of double mutants to detect structural changes in the active site of the tyrosyl-tRNA synthetase (Bacillus stearothermophilus)
    • Carter PJ, Winter G, Wilkinson AJ, Fersht AR. 1984. The use of double mutants to detect structural changes in the active site of the tyrosyl-tRNA synthetase (Bacillus stearothermophilus). Cell 38:835-840.
    • (1984) Cell , vol.38 , pp. 835-840
    • Carter, P.J.1    Winter, G.2    Wilkinson, A.J.3    Fersht, A.R.4
  • 10
    • 0017119540 scopus 로고
    • Arginyl-tRNA synthetase from Escherichia coli. Influence of arginine biosynthetic precursors on the charging of arginine-acceptor tRNA with [14C]arginine
    • Charlier J, Gerlo E. 1976. Arginyl-tRNA synthetase from Escherichia coli. Influence of arginine biosynthetic precursors on the charging of arginine-acceptor tRNA with [14C]arginine. Eur J Biochem 70:137-145.
    • (1976) Eur J Biochem , vol.70 , pp. 137-145
    • Charlier, J.1    Gerlo, E.2
  • 11
    • 0023902156 scopus 로고
    • The yeast VAS1 gene product encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases
    • Chatton B, Walter P, Ebel JP, Lacroute F, Fasiolo F. 1988. The yeast VAS1 gene product encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J Biol Chem 263:52-57.
    • (1988) J Biol Chem , vol.263 , pp. 52-57
    • Chatton, B.1    Walter, P.2    Ebel, J.P.3    Lacroute, F.4    Fasiolo, F.5
  • 12
    • 0027482856 scopus 로고
    • Role of dimerization in yeast aspartyl-tRNA synthetase and importance of the class II invariant proline
    • Eriani G, Cavarelli J, Martin F, Dirheimer G, Moras D, Gangloff J. 1993. Role of dimerization in yeast aspartyl-tRNA synthetase and importance of the class II invariant proline. Proc Natl Acad Sci USA 90:10816-10820.
    • (1993) Proc Natl Acad Sci USA , vol.90 , pp. 10816-10820
    • Eriani, G.1    Cavarelli, J.2    Martin, F.3    Dirheimer, G.4    Moras, D.5    Gangloff, J.6
  • 13
    • 0033609807 scopus 로고    scopus 로고
    • Asp binding in the ground- and transition-state complex and discriminate against noncognate tRNAs
    • Asp binding in the ground- and transition-state complex and discriminate against noncognate tRNAs. J Mol Biol 291:761-773.
    • (1999) J Mol Biol , vol.291 , pp. 761-773
    • Eriani, G.1    Gangloff, J.2
  • 14
    • 0017326738 scopus 로고
    • Editing mechanisms in protein synthesis. Rejection of valine by the isoleucyl-tRNA synthetase
    • Fersht AR. 1977. Editing mechanisms in protein synthesis. Rejection of valine by the isoleucyl-tRNA synthetase. Biochemistry 16: 1025-1030.
    • (1977) Biochemistry , vol.16 , pp. 1025-1030
    • Fersht, A.R.1
  • 17
    • 0017121494 scopus 로고
    • Arginyl-tRNA synthetase from baker's yeast. Purification and some properties
    • Gangloff J, Schutz A, Dirheimer G. 1976. Arginyl-tRNA synthetase from baker's yeast. Purification and some properties. Eur J Biochem 65:177-182.
    • (1976) Eur J Biochem , vol.65 , pp. 177-182
    • Gangloff, J.1    Schutz, A.2    Dirheimer, G.3
  • 18
    • 0021010428 scopus 로고
    • Assessing import of proteins into mitochondria: An overview
    • Gasser S, Hay R. 1983. Assessing import of proteins into mitochondria: An overview. Methods Enzymol 97:245-254.
    • (1983) Methods Enzymol , vol.97 , pp. 245-254
    • Gasser, S.1    Hay, R.2
  • 19
    • 0026339040 scopus 로고
    • Arginine-395 is required for efficient in vivo and in vitro amino-acylation of transfer RNAs by Escherichia coli methionyl-transfer RNA synthetase
    • Ghosh G, Kim HY, Demaret JP, Brunie S, Schulman LH. 1991. Arginine-395 is required for efficient in vivo and in vitro amino-acylation of transfer RNAs by Escherichia coli methionyl-transfer RNA synthetase. Biochemistry 30:11767-11774.
    • (1991) Biochemistry , vol.30 , pp. 11767-11774
    • Ghosh, G.1    Kim, H.Y.2    Demaret, J.P.3    Brunie, S.4    Schulman, L.H.5
  • 20
    • 0025216893 scopus 로고
    • Identification of the anticodon recognition site of Escherichia coli methionyl-tRNA synthetases
    • Ghosh G, Pelka H, Schulman LDH. 1990. Identification of the anticodon recognition site of Escherichia coli methionyl-tRNA synthetases. Biochemistry 29:2220-2225.
    • (1990) Biochemistry , vol.29 , pp. 2220-2225
    • Ghosh, G.1    Pelka, H.2    Schulman, L.D.H.3
  • 21
    • 0018475310 scopus 로고
    • Adenosine triphosphate consumption by bacterial arginyl-transfer ribonucleic acid synthetases
    • Godeau J, Charlier J. 1979. Adenosine triphosphate consumption by bacterial arginyl-transfer ribonucleic acid synthetases. Biochem J 179:407-412.
    • (1979) Biochem J , vol.179 , pp. 407-412
    • Godeau, J.1    Charlier, J.2
  • 24
    • 0029902187 scopus 로고    scopus 로고
    • Interactions between tRNA identity nucleotides and their recognition sites in glutaminyl-tRNA synthetase determine the cognate amino acid affinity of the enzyme
    • Ibba M, Hong KW, Sherman JM, Sever S, Söll D. 1996. Interactions between tRNA identity nucleotides and their recognition sites in glutaminyl-tRNA synthetase determine the cognate amino acid affinity of the enzyme. Proc Natl Acad Sci USA 93:6953-6958.
    • (1996) Proc Natl Acad Sci USA , vol.93 , pp. 6953-6958
    • Ibba, M.1    Hong, K.W.2    Sherman, J.M.3    Sever, S.4    Söll, D.5
  • 25
    • 0000385812 scopus 로고
    • The relationship between synthetic and editing functions of the active site of an aminoacyl-tRNA synthetase
    • Kim H, Ghosh G, Schulman L, Brunie S, Jakubowski H. 1993a. The relationship between synthetic and editing functions of the active site of an aminoacyl-tRNA synthetase. Proc Natl Acad Sci USA 90:11553-11557.
    • (1993) Proc Natl Acad Sci USA , vol.90 , pp. 11553-11557
    • Kim, H.1    Ghosh, G.2    Schulman, L.3    Brunie, S.4    Jakubowski, H.5
  • 26
    • 0027433514 scopus 로고
    • Two separate peptides in Escherichia coli methionyl-tRNA synthetase form the anticodon binding site for methionine
    • Kim HY, Pelka H, Brunie S, Schulman LH. 1993b. Two separate peptides in Escherichia coli methionyl-tRNA synthetase form the anticodon binding site for methionine. Biochemistry 32:10506-10511.
    • (1993) Biochemistry , vol.32 , pp. 10506-10511
    • Kim, H.Y.1    Pelka, H.2    Brunie, S.3    Schulman, L.H.4
  • 27
    • 0027453545 scopus 로고
    • Diversified sequences of peptide epitope for same-RNA recognition
    • Kim S, Ribas De Pouplana L, Schimmel P. 1993c. Diversified sequences of peptide epitope for same-RNA recognition. Proc Natl Acad Sci USA 90:10046-10050.
    • (1993) Proc Natl Acad Sci USA , vol.90 , pp. 10046-10050
    • Kim, S.1    Ribas De Pouplana, L.2    Schimmel, P.3
  • 29
    • 0014421401 scopus 로고
    • Purification of arginine tRNA 3 from brewer's yeast
    • Kuntzel B, Dirheimer G. 1968. Purification of arginine tRNA 3 from brewer's yeast. Nature 219:720-721.
    • (1968) Nature , vol.219 , pp. 720-721
    • Kuntzel, B.1    Dirheimer, G.2
  • 30
    • 0001173909 scopus 로고
    • Transition-state stabilization in the mechanism of tyrosyl-tRNA synthetase revealed by protein engineering
    • Leatherbarrow RJ, Fersht AR, Winter G. 1985. Transition-state stabilization in the mechanism of tyrosyl-tRNA synthetase revealed by protein engineering. Proc Natl Acad Sci USA 82:7840-7844.
    • (1985) Proc Natl Acad Sci USA , vol.82 , pp. 7840-7844
    • Leatherbarrow, R.J.1    Fersht, A.R.2    Winter, G.3
  • 31
    • 0014669712 scopus 로고
    • Mechanism of action of amino acid transfer ribonucleic ligases
    • Loftfield RB, Eigner EA. 1969. Mechanism of action of amino acid transfer ribonucleic ligases. J Biol Chem 244:1746-1754.
    • (1969) J Biol Chem , vol.244 , pp. 1746-1754
    • Loftfield, R.B.1    Eigner, E.A.2
  • 32
    • 0024300362 scopus 로고
    • Changing the acceptor identity of a transfer RNA by altering nucleotides in a "variable pocket"
    • McClain WH, Foss K. 1988. Changing the acceptor identity of a transfer RNA by altering nucleotides in a "variable pocket". Science 241:1804-1807.
    • (1988) Science , vol.241 , pp. 1804-1807
    • McClain, W.H.1    Foss, K.2
  • 34
    • 0026059951 scopus 로고
    • Lysine 335, part of the KMSKS signature sequence, plays a crucial role in the amino acid activation catalyzed by the methionyl-tRNA synthetase from Escherichia coli
    • Mechulam Y, Dardel F, LeCorre D, Blanquet S, Fayat G. 1991. Lysine 335, part of the KMSKS signature sequence, plays a crucial role in the amino acid activation catalyzed by the methionyl-tRNA synthetase from Escherichia coli. J Mol Biol 217:465-475.
    • (1991) J Mol Biol , vol.217 , pp. 465-475
    • Mechulam, Y.1    Dardel, F.2    LeCorre, D.3    Blanquet, S.4    Fayat, G.5
  • 36
    • 0019155456 scopus 로고
    • Regulation of compartmentation of amino acid pools in Saccharomyces cerevisiae and its effects on metabolic control
    • Messenguy F, Colin D, Ten Have JP. 1980. Regulation of compartmentation of amino acid pools in Saccharomyces cerevisiae and its effects on metabolic control. Eur J Biochem 108:439-447.
    • (1980) Eur J Biochem , vol.108 , pp. 439-447
    • Messenguy, F.1    Colin, D.2    Ten Have, J.P.3
  • 38
    • 0014199531 scopus 로고
    • The arginyl-transfer ribonucleic acid synthetase of Escherichia coli
    • Mitra SK, Mehler AH. 1967. The arginyl-transfer ribonucleic acid synthetase of Escherichia coli. J Biol Chem 242:5490-5494.
    • (1967) J Biol Chem , vol.242 , pp. 5490-5494
    • Mitra, S.K.1    Mehler, A.H.2
  • 39
    • 0022470359 scopus 로고
    • The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetase of S. cerevisiae
    • Natsoulis G, Hilger F, Fink GR. 1986. The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetase of S. cerevisiae. Cell 46:235-243.
    • (1986) Cell , vol.46 , pp. 235-243
    • Natsoulis, G.1    Hilger, F.2    Fink, G.R.3
  • 41
    • 0025267036 scopus 로고
    • Relaxation of transfer RNA specificity by removal of modified nucleotides
    • Perret V, Garcia A, Grosjean H, Ebel JP, Florentz C, Giegé R. 1990. Relaxation of transfer RNA specificity by removal of modified nucleotides. Nature 344:787-789.
    • (1990) Nature , vol.344 , pp. 787-789
    • Perret, V.1    Garcia, A.2    Grosjean, H.3    Ebel, J.P.4    Florentz, C.5    Giegé, R.6
  • 44
    • 0023666149 scopus 로고
    • KAR1, a gene required for function of both intranuclear and extranuclear microtubules in yeast
    • Rose M, Fink G. 1987. KAR1, a gene required for function of both intranuclear and extranuclear microtubules in yeast. Cell 48:1047-1060.
    • (1987) Cell , vol.48 , pp. 1047-1060
    • Rose, M.1    Fink, G.2
  • 45
    • 0020645054 scopus 로고
    • One-step gene disruption in yeast
    • Rothstein R. 1983. One-step gene disruption in yeast. Methods Enzymol 101:202-211.
    • (1983) Methods Enzymol , vol.101 , pp. 202-211
    • Rothstein, R.1
  • 47
    • 0028831760 scopus 로고
    • Improved high-level expression system for eukaryotic genes in Escherichia coli using T7 RNA polymerase and rare ArgtRNAs
    • Schenk PM, Baumann S, Mattes R, Steinbiss H-H. 1995. Improved high-level expression system for eukaryotic genes in Escherichia coli using T7 RNA polymerase and rare ArgtRNAs. BioTechniques 19:196-200.
    • (1995) BioTechniques , vol.19 , pp. 196-200
    • Schenk, P.M.1    Baumann, S.2    Mattes, R.3    Steinbiss, H.-H.4
  • 48
    • 0028172539 scopus 로고
    • Methionyl-tRNA synthetase needs an intact and mobile KMSKS motif in catalysis of methionyl adenylate formation
    • Schmitt E, Meinnel T, Blanquet S, Mechulam Y. 1994. Methionyl-tRNA synthetase needs an intact and mobile KMSKS motif in catalysis of methionyl adenylate formation. J Mol Biol 242:566-577.
    • (1994) J Mol Biol , vol.242 , pp. 566-577
    • Schmitt, E.1    Meinnel, T.2    Blanquet, S.3    Mechulam, Y.4
  • 49
    • 0027488750 scopus 로고
    • Two acidic residues of Escherichia coli methionyl-tRNA synthetase act as negative discriminants towards the binding of noncognate tRNA anticodons
    • Schmitt E, Meinnel T, Panvert M, Mechulam Y, Blanquet S. 1993. Two acidic residues of Escherichia coli methionyl-tRNA synthetase act as negative discriminants towards the binding of noncognate tRNA anticodons. J Mol Biol 233:615-628.
    • (1993) J Mol Biol , vol.233 , pp. 615-628
    • Schmitt, E.1    Meinnel, T.2    Panvert, M.3    Mechulam, Y.4    Blanquet, S.5
  • 50
    • 0028883783 scopus 로고
    • Transition state stabilization by the 'high' motif of class I aminoacyl-tRNA synthetases: The case of Escherichia coli methionyl-tRNA synthetase
    • Schmitt E, Panvert M, Blanquet S, Mechulam Y. 1995. Transition state stabilization by the 'high' motif of class I aminoacyl-tRNA synthetases: The case of Escherichia coli methionyl-tRNA synthetase. Nucleic Acids Res 23:4793-4798.
    • (1995) Nucleic Acids Res , vol.23 , pp. 4793-4798
    • Schmitt, E.1    Panvert, M.2    Blanquet, S.3    Mechulam, Y.4
  • 51
    • 0030033267 scopus 로고    scopus 로고
    • Aminoacyl-tRNA synthetases optimize both cognate tRNA recognition and discrimination against noncognate tRNAs
    • Sherman JM, Söll D. 1996. Aminoacyl-tRNA synthetases optimize both cognate tRNA recognition and discrimination against noncognate tRNAs. Biochemistry 35:601-607.
    • (1996) Biochemistry , vol.35 , pp. 601-607
    • Sherman, J.M.1    Söll, D.2
  • 52
    • 0024669291 scopus 로고
    • A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
    • Sikorski RS, Hieter P. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19-27.
    • (1989) Genetics , vol.122 , pp. 19-27
    • Sikorski, R.S.1    Hieter, P.2
  • 54
    • 0031574348 scopus 로고    scopus 로고
    • Mirror image alternative interaction patterns of the same tRNA with either class I arginyl-tRNA synthetase or class II aspartyl-tRNA synthetase
    • Sissler M, Eriani G, Martin F, Giegé R, Florentz C. 1997. Mirror image alternative interaction patterns of the same tRNA with either class I arginyl-tRNA synthetase or class II aspartyl-tRNA synthetase. Nucleic Acids Res 25:4899-4906.
    • (1997) Nucleic Acids Res , vol.25 , pp. 4899-4906
    • Sissler, M.1    Eriani, G.2    Martin, F.3    Giegé, R.4    Florentz, C.5
  • 55
    • 0029842244 scopus 로고    scopus 로고
    • Arginine aminoacylation identity is context-dependent and ensured by alternate recognition sets in the anticodon loop of accepting tRNA transcripts
    • Sissler M, Giegé R, Florentz C. 1996. Arginine aminoacylation identity is context-dependent and ensured by alternate recognition sets in the anticodon loop of accepting tRNA transcripts. EMBO J 15:5069-5076.
    • (1996) EMBO J , vol.15 , pp. 5069-5076
    • Sissler, M.1    Giegé, R.2    Florentz, C.3
  • 56
    • 0029036107 scopus 로고
    • Mitochondrial and cytoplasmic isoleucyl-, glutamyl- and arginyl-tRNA synthetases of yeast are encoded by separate genes
    • Tzagoloff A, Shtanko A. 1995. Mitochondrial and cytoplasmic isoleucyl-, glutamyl- and arginyl-tRNA synthetases of yeast are encoded by separate genes. Eur J Biochem 230:582-586.
    • (1995) Eur J Biochem , vol.230 , pp. 582-586
    • Tzagoloff, A.1    Shtanko, A.2
  • 57
    • 0015445457 scopus 로고
    • Purification of Arg II tRNA from beer yeasts
    • Weissenbach J, Werner C, Dirheimer G. 1972. Purification of Arg II tRNA from beer yeasts. Biochimie 54: 111-113.
    • (1972) Biochimie , vol.54 , pp. 111-113
    • Weissenbach, J.1    Werner, C.2    Dirheimer, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.