-
1
-
-
0029670289
-
Protein sorting by transport vesicles
-
Rothman J.E., Wieland F.T. Protein sorting by transport vesicles. Science. 272:1996;227-234.
-
(1996)
Science
, vol.272
, pp. 227-234
-
-
Rothman, J.E.1
Wieland, F.T.2
-
3
-
-
0031964997
-
Getting through the Golgi complex
-
Pelham H.R.B. Getting through the Golgi complex. Trends Cell Biol. 8:1998;45-49.
-
(1998)
Trends Cell Biol
, vol.8
, pp. 45-49
-
-
Pelham, H.R.B.1
-
4
-
-
0032433851
-
The curious status of the Golgi apparatus
-
Glick B.S., Malhotra V. The curious status of the Golgi apparatus. Cell. 95:1998;883-889.
-
(1998)
Cell
, vol.95
, pp. 883-889
-
-
Glick, B.S.1
Malhotra, V.2
-
5
-
-
0029872276
-
Coat proteins and vesicle budding
-
Schekman R., Orci L. Coat proteins and vesicle budding. Science. 271:1996;1526-1533.
-
(1996)
Science
, vol.271
, pp. 1526-1533
-
-
Schekman, R.1
Orci, L.2
-
6
-
-
0030955328
-
ER-to-Golgi transport visualized in living cells
-
Presley J.F., Cole N.B., Schroer T.A., Hirschberg K., Zaal K.J.M., Lippincott-Schwartz J. ER-to-Golgi transport visualized in living cells. Nature. 389:1997;81-85.
-
(1997)
Nature
, vol.389
, pp. 81-85
-
-
Presley, J.F.1
Cole, N.B.2
Schroer, T.A.3
Hirschberg, K.4
Zaal, K.J.M.5
Lippincott-Schwartz, J.6
-
7
-
-
0030928782
-
Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI
-
Scales S.J., Pepperkok R., Kreis T.E. Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI. Cell. 90:1997;1137-1148.
-
(1997)
Cell
, vol.90
, pp. 1137-1148
-
-
Scales, S.J.1
Pepperkok, R.2
Kreis, T.E.3
-
8
-
-
0026503134
-
The Golgi complex: In vitro veritas?
-
Mellman I., Simons K. The Golgi complex: in vitro veritas? Cell. 68:1992;829-840.
-
(1992)
Cell
, vol.68
, pp. 829-840
-
-
Mellman, I.1
Simons, K.2
-
9
-
-
0033594080
-
Golgi structure in three dimensions: Functional insights from the normal rat kidney cell
-
Electron microscope tomography was used to reconstruct part of a vertebrate Golgi apparatus at ~7 nm resolution. The results emphasize structural features that remain to be explained, including: clustering of ERGIC elements next to the cis-most cisterna; close alignment of successive cisternae; homotypic lateral connections between cisternae; mutually exclusive localization of COPI- and clathrin-coated buds to cis/medial- and trans-cisternae, respectively; and VTC-like structures near the edges of Golgi stacks.
-
Ladinsky M.S., Mastronarde D.N., McIntosh J.R., Howell K.E., Staehelin L.A. Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J Cell Biol. 144:1999;1135-1149. Electron microscope tomography was used to reconstruct part of a vertebrate Golgi apparatus at ~7 nm resolution. The results emphasize structural features that remain to be explained, including: clustering of ERGIC elements next to the cis-most cisterna; close alignment of successive cisternae; homotypic lateral connections between cisternae; mutually exclusive localization of COPI- and clathrin-coated buds to cis/medial- and trans-cisternae, respectively; and VTC-like structures near the edges of Golgi stacks.
-
(1999)
J Cell Biol
, vol.144
, pp. 1135-1149
-
-
Ladinsky, M.S.1
Mastronarde, D.N.2
McIntosh, J.R.3
Howell, K.E.4
Staehelin, L.A.5
-
10
-
-
0033538549
-
Vesicular tubular clusters between the ER and Golgi mediate concentration of soluble secretory proteins by exclusion from COPI-coated vesicles
-
Immunoelectron microscopy revealed that ERGIC elements function not only to recycle components of the transport machinery but also to concentrate certain secretory cargo proteins.
-
Martínez-Menárguez J.A., Geuze H.J., Slot J.W., Klumperman J. Vesicular tubular clusters between the ER and Golgi mediate concentration of soluble secretory proteins by exclusion from COPI-coated vesicles. Cell. 98:1999;81-90. Immunoelectron microscopy revealed that ERGIC elements function not only to recycle components of the transport machinery but also to concentrate certain secretory cargo proteins.
-
(1999)
Cell
, vol.98
, pp. 81-90
-
-
Martínez-Menárguez, J.A.1
Geuze, H.J.2
Slot, J.W.3
Klumperman, J.4
-
11
-
-
0033179888
-
Membrane tethering in intracellular transport
-
Waters M.G., Pfeffer S.R. Membrane tethering in intracellular transport. Curr Opin Cell Biol. 11:1999;453-459.
-
(1999)
Curr Opin Cell Biol
, vol.11
, pp. 453-459
-
-
Waters, M.G.1
Pfeffer, S.R.2
-
12
-
-
0032080081
-
TRAPP, a highly conserved novel complex on the cis-Golgi that mediates vesicle docking and fusion
-
Sacher M., Jiang Y., Barrowman J., Scarpa A., Burston J., Zhang L., Schieltz D., Yates J.R., Abeliovich H., Ferro-Novick S. TRAPP, a highly conserved novel complex on the cis-Golgi that mediates vesicle docking and fusion. EMBO J. 17:1998;2494-2503.
-
(1998)
EMBO J
, vol.17
, pp. 2494-2503
-
-
Sacher, M.1
Jiang, Y.2
Barrowman, J.3
Scarpa, A.4
Burston, J.5
Zhang, L.6
Schieltz, D.7
Yates, J.R.8
Abeliovich, H.9
Ferro-Novick, S.10
-
13
-
-
0033571293
-
Sec34p, a protein required for vesicle tethering to the yeast Golgi apparatus, is in a complex with Sec35p
-
VanRheenen S.M., Cao X., Sapperstein S.K., Chiang E.C., Lupashin V.L., Barlowe C., Waters M.G. Sec34p, a protein required for vesicle tethering to the yeast Golgi apparatus, is in a complex with Sec35p. J Cell Biol. 147:1999;729-742.
-
(1999)
J Cell Biol
, vol.147
, pp. 729-742
-
-
Vanrheenen, S.M.1
Cao, X.2
Sapperstein, S.K.3
Chiang, E.C.4
Lupashin, V.L.5
Barlowe, C.6
Waters, M.G.7
-
14
-
-
0032882140
-
High-copy suppressor analysis reveals a physical interaction between Sec34p and Sec35p, a protein implicated in vesicle docking
-
Kim D.W., Sacher M., Scarpa A., Quinn A.M., Ferro-Novick S. High-copy suppressor analysis reveals a physical interaction between Sec34p and Sec35p, a protein implicated in vesicle docking. Mol Biol Cell. 10:1999;3317-3329.
-
(1999)
Mol Biol Cell
, vol.10
, pp. 3317-3329
-
-
Kim, D.W.1
Sacher, M.2
Scarpa, A.3
Quinn, A.M.4
Ferro-Novick, S.5
-
15
-
-
0033552616
-
ER to Golgi transport: Requirement for p115 at a pre-Golgi VTC stage
-
Alvarez C., Fujita H., Hubbard A., Sztul E. ER to Golgi transport: requirement for p115 at a pre-Golgi VTC stage. J Cell Biol. 147:1999;1205-1222.
-
(1999)
J Cell Biol
, vol.147
, pp. 1205-1222
-
-
Alvarez, C.1
Fujita, H.2
Hubbard, A.3
Sztul, E.4
-
16
-
-
0033611145
-
ER/Golgi intermediates acquire Golgi enzymes by brefeldin A-sensitive retrograde transport in vitro
-
Lin C.C., Love H.D., Gushue J.N., Bergeron J.J., Ostermann J. ER/Golgi intermediates acquire Golgi enzymes by brefeldin A-sensitive retrograde transport in vitro. J Cell Biol. 147:1999;1457-1472.
-
(1999)
J Cell Biol
, vol.147
, pp. 1457-1472
-
-
Lin, C.C.1
Love, H.D.2
Gushue, J.N.3
Bergeron, J.J.4
Ostermann, J.5
-
17
-
-
0030755580
-
Bidirectional transport by distinct populations of COPI-coated vesicles
-
Orci L., Stamnes M., Ravazzola M., Amherdt M., Perrelet A., Söllner T.H., Rothman J.E. Bidirectional transport by distinct populations of COPI-coated vesicles. Cell. 90:1997;335-349.
-
(1997)
Cell
, vol.90
, pp. 335-349
-
-
Orci, L.1
Stamnes, M.2
Ravazzola, M.3
Amherdt, M.4
Perrelet, A.5
Söllner, T.H.6
Rothman, J.E.7
-
18
-
-
0028607392
-
Concentration of intracellular hepatic apolipoprotein E in Golgi apparatus saccular distensions and endosomes
-
Dahan S., Ahluwalia J.P., Wong L., Posner B.I., Bergeron J.J.M. Concentration of intracellular hepatic apolipoprotein E in Golgi apparatus saccular distensions and endosomes. J Cell Biol. 127:1994;1859-1869.
-
(1994)
J Cell Biol
, vol.127
, pp. 1859-1869
-
-
Dahan, S.1
Ahluwalia, J.P.2
Wong, L.3
Posner, B.I.4
Bergeron, J.J.M.5
-
19
-
-
0029808891
-
The secretory pathway of protists: Spatial and functional organization and evolution
-
Becker B., Melkonian M. The secretory pathway of protists: spatial and functional organization and evolution. Microbiol Rev. 60:1996;697-721.
-
(1996)
Microbiol Rev
, vol.60
, pp. 697-721
-
-
Becker, B.1
Melkonian, M.2
-
20
-
-
0032417711
-
Procollagen traverses the Golgi stack without leaving the lumen of cisternae: Evidence for cisternal maturation
-
Bonfanti L., Mironov A.A. Jr., Martínez-Menárguez J., Martella O., Fusella A., Baldassarre M., Buccione R., Geuze H.J., Mironov A.A., Luini A. Procollagen traverses the Golgi stack without leaving the lumen of cisternae: evidence for cisternal maturation. Cell. 95:1998;993-1003.
-
(1998)
Cell
, vol.95
, pp. 993-1003
-
-
Bonfanti, L.1
Mironov, A.a.jr.2
Martínez-Menárguez, J.3
Martella, O.4
Fusella, A.5
Baldassarre, M.6
Buccione, R.7
Geuze, H.J.8
Mironov, A.A.9
Luini, A.10
-
21
-
-
0031559885
-
A cisternal maturation mechanism can explain the asymmetry of the Golgi stack
-
Glick B.S., Elston T., Oster G. A cisternal maturation mechanism can explain the asymmetry of the Golgi stack. FEBS Lett. 414:1997;177-181.
-
(1997)
FEBS Lett
, vol.414
, pp. 177-181
-
-
Glick, B.S.1
Elston, T.2
Oster, G.3
-
25
-
-
0032498623
-
Isolation of functional Golgi-derived vesicles with a possible role in retrograde transport
-
Love H.D., Lin C-C., Short C.S., Ostermann J. Isolation of functional Golgi-derived vesicles with a possible role in retrograde transport. J Cell Biol. 140:1998;541-551.
-
(1998)
J Cell Biol
, vol.140
, pp. 541-551
-
-
Love, H.D.1
Lin, C.-C.2
Short, C.S.3
Ostermann, J.4
-
26
-
-
0033984895
-
Organization of the yeast Golgi complex into at least four functionally distinct compartments
-
Brigance W.T., Barlowe C., Graham T.R. Organization of the yeast Golgi complex into at least four functionally distinct compartments. Mol Biol Cell. 11:2000;171-182.
-
(2000)
Mol Biol Cell
, vol.11
, pp. 171-182
-
-
Brigance, W.T.1
Barlowe, C.2
Graham, T.R.3
-
27
-
-
0027360627
-
Golgi membrane dynamics imaged by freeze-etch electron microscopy: Views of different membrane coatings involved in tubulation versus vesiculation
-
Weidman P., Roth R., Heuser J. Golgi membrane dynamics imaged by freeze-etch electron microscopy: views of different membrane coatings involved in tubulation versus vesiculation. Cell. 75:1993;123-133.
-
(1993)
Cell
, vol.75
, pp. 123-133
-
-
Weidman, P.1
Roth, R.2
Heuser, J.3
-
28
-
-
0032478142
-
Vesicles on strings: Morphological evidence for processive transport within the Golgi stack
-
Orci L., Perrelet A., Rothman J.E. Vesicles on strings: morphological evidence for processive transport within the Golgi stack. Proc Natl Acad Sci USA. 95:1998;2279-2283.
-
(1998)
Proc Natl Acad Sci USA
, vol.95
, pp. 2279-2283
-
-
Orci, L.1
Perrelet, A.2
Rothman, J.E.3
-
29
-
-
0032498855
-
A role for giantin in docking COPI vesicles to Golgi membranes
-
Sönnichsen B., Lowe M., Levine T., Jämsä E., Dirac-Svejstrup B., Warren G. A role for giantin in docking COPI vesicles to Golgi membranes. J Cell Biol. 140:1998;1013-1021.
-
(1998)
J Cell Biol
, vol.140
, pp. 1013-1021
-
-
Sönnichsen, B.1
Lowe, M.2
Levine, T.3
Jämsä, E.4
Dirac-Svejstrup, B.5
Warren, G.6
-
30
-
-
0034723203
-
The amino-terminal domain of the Golgi protein giantin interacts directly with the vesicle-tethering protein p115
-
Lesa G.M., Seeman J., Shorter J., Vandekerckhove J., Warren G. The amino-terminal domain of the Golgi protein giantin interacts directly with the vesicle-tethering protein p115. J Biol Chem. 275:2000;2831-2836.
-
(2000)
J Biol Chem
, vol.275
, pp. 2831-2836
-
-
Lesa, G.M.1
Seeman, J.2
Shorter, J.3
Vandekerckhove, J.4
Warren, G.5
-
31
-
-
0033535585
-
The GRIP domain - A novel Golgi-targeting domain found in several coiled-coil proteins
-
Munro S., Nichols B.J. The GRIP domain - a novel Golgi-targeting domain found in several coiled-coil proteins. Curr Biol. 9:1999;377-380.
-
(1999)
Curr Biol
, vol.9
, pp. 377-380
-
-
Munro, S.1
Nichols, B.J.2
-
32
-
-
0033535617
-
A novel Rab6-interacting domain defines a family of Golgi-targeted coiled-coil proteins
-
Barr F.A. A novel Rab6-interacting domain defines a family of Golgi-targeted coiled-coil proteins. Curr Biol. 9:1999;381-384.
-
(1999)
Curr Biol
, vol.9
, pp. 381-384
-
-
Barr, F.A.1
-
33
-
-
0033535542
-
A novel Golgi-localisation domain shared by a class of coiled-coil peripheral membrane proteins
-
Kjer-Nielsen L., Teasdale R.D., van Vliet C., Gleeson P.A. A novel Golgi-localisation domain shared by a class of coiled-coil peripheral membrane proteins. Curr Biol. 9:1999;385-388.
-
(1999)
Curr Biol
, vol.9
, pp. 385-388
-
-
Kjer-Nielsen, L.1
Teasdale, R.D.2
Van Vliet, C.3
Gleeson, P.A.4
-
34
-
-
0033613967
-
Identification and characterization of golgin-84, a novel Golgi integral membrane protein with a cytoplasmic coiled-coil domain
-
Bascom R.A., Srinivasan S., Nussbaum R.L. Identification and characterization of golgin-84, a novel Golgi integral membrane protein with a cytoplasmic coiled-coil domain. J Biol Chem. 274:1999;2953-2962.
-
(1999)
J Biol Chem
, vol.274
, pp. 2953-2962
-
-
Bascom, R.A.1
Srinivasan, S.2
Nussbaum, R.L.3
-
35
-
-
0033606771
-
ERG30, a VAP-33-related protein, functions in protein transport mediated by COPI vesicles
-
Soussan L., Burakov D., Daniels M.P., Toister-Achituv M., Porat A., Yarden Y., Elazar Z. ERG30, a VAP-33-related protein, functions in protein transport mediated by COPI vesicles. J Cell Biol. 146:1999;301-311.
-
(1999)
J Cell Biol
, vol.146
, pp. 301-311
-
-
Soussan, L.1
Burakov, D.2
Daniels, M.P.3
Toister-Achituv, M.4
Porat, A.5
Yarden, Y.6
Elazar, Z.7
-
36
-
-
0030753006
-
Variations on the intracellular transport theme: Maturing cisternae and trafficking tubules
-
Mironov A.A., Weidman P., Luini A. Variations on the intracellular transport theme: maturing cisternae and trafficking tubules. J Cell Biol. 138:1997;481-484.
-
(1997)
J Cell Biol
, vol.138
, pp. 481-484
-
-
Mironov, A.A.1
Weidman, P.2
Luini, A.3
-
37
-
-
0032526224
-
Sorting and storage during secretory granule biogenesis: Looking backward and looking forward
-
Arvan P., Castle D. Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochem J. 332:1998;593-610.
-
(1998)
Biochem J
, vol.332
, pp. 593-610
-
-
Arvan, P.1
Castle, D.2
-
38
-
-
0032517767
-
Kinetic analysis of secretory protein traffic and characterization of Golgi to plasma membrane transport intermediates in living cells
-
Hirschberg K., Miller C.M., Ellenberg J., Presley J.F., Siggia E.D., Phair R.D., Lippincott-Schwartz J. Kinetic analysis of secretory protein traffic and characterization of Golgi to plasma membrane transport intermediates in living cells. J Cell Biol. 143:1998;1485-1503.
-
(1998)
J Cell Biol
, vol.143
, pp. 1485-1503
-
-
Hirschberg, K.1
Miller, C.M.2
Ellenberg, J.3
Presley, J.F.4
Siggia, E.D.5
Phair, R.D.6
Lippincott-Schwartz, J.7
-
40
-
-
0034627793
-
Correlative light-electron microscopy reveals the tubular-saccular ultrastructure of carriers operating between the Golgi apparatus and plasma membrane
-
•] characterize the secretory carriers that transport material from the TGN to the plasma membrane. As visualized by fluorescence and electron microscopy, secretory carriers are tubular-saccular structures up to 1.5 μm or more in diameter.
-
•] characterize the secretory carriers that transport material from the TGN to the plasma membrane. As visualized by fluorescence and electron microscopy, secretory carriers are tubular-saccular structures up to 1.5 μm or more in diameter.
-
(2000)
J Cell Biol
, vol.148
, pp. 45-58
-
-
Polishchuk, R.S.1
Polishchuk, E.V.2
Marra, P.3
Alberti, S.4
Buccione, R.5
Luini, A.6
Mironov, A.A.7
-
42
-
-
0002471181
-
Three-dimensional structure of the Golgi apparatus in mammalian cells
-
E.G. Berger, & J. Roth. Birkhäuser Verlag
-
Rambourg A., Clermont Y. Three-dimensional structure of the Golgi apparatus in mammalian cells. Berger E.G., Roth J. The Golgi Apparatus. 1997;37-61 Birkhäuser Verlag.
-
(1997)
The Golgi Apparatus
, pp. 37-61
-
-
Rambourg, A.1
Clermont, Y.2
-
43
-
-
0024502543
-
The dynamic nature of the Golgi complex
-
Griffiths G., Fuller S.D., Back R., Hollinshead M., Pfeiffer S., Simons K. The dynamic nature of the Golgi complex. J Cell Biol. 108:1989;277-297.
-
(1989)
J Cell Biol
, vol.108
, pp. 277-297
-
-
Griffiths, G.1
Fuller, S.D.2
Back, R.3
Hollinshead, M.4
Pfeiffer, S.5
Simons, K.6
-
44
-
-
0032895860
-
Osmotically induced cell volume changes alter anterograde and retrograde transport, Golgi structure, and COPI dissociation
-
Lee T.H., Linstedt A.D. Osmotically induced cell volume changes alter anterograde and retrograde transport, Golgi structure, and COPI dissociation. Mol Biol Cell. 10:1999;1445-1462.
-
(1999)
Mol Biol Cell
, vol.10
, pp. 1445-1462
-
-
Lee, T.H.1
Linstedt, A.D.2
-
45
-
-
0033759972
-
Morphogenesis and dynamics of the yeast Golgi apparatus
-
In a kinetic morphological analysis, the authors provide evidence that the S. cerevisiae Golgi operates by a maturation mechanism.
-
Morin-Ganet M-N., Rambourg A., Deitz S.B., Franzusoff A., Képès F. Morphogenesis and dynamics of the yeast Golgi apparatus. Traffic. 1:2000;56-68. In a kinetic morphological analysis, the authors provide evidence that the S. cerevisiae Golgi operates by a maturation mechanism.
-
(2000)
Traffic
, vol.1
, pp. 56-68
-
-
Morin-Ganet, M.-N.1
Rambourg, A.2
Deitz, S.B.3
Franzusoff, A.4
Képès, F.5
-
46
-
-
0033538345
-
Gβγ-mediated regulation of Golgi organization is through the direct activation of protein kinase D
-
Previous work revealed that the mammalian Golgi structure is regulated by the bg portion of heterotrimeric G proteins. The downstream target of Gβγ is now identified as protein kinase D, a divergent member of the protein kinase C family.
-
Jamora C., Tamanouye N., van Lint J., Laudenslager J., Vandenheede J.R., Faulkner D.J., Malhotra V. Gβγ-mediated regulation of Golgi organization is through the direct activation of protein kinase D. Cell. 98:1999;59-68. Previous work revealed that the mammalian Golgi structure is regulated by the bg portion of heterotrimeric G proteins. The downstream target of Gβγ is now identified as protein kinase D, a divergent member of the protein kinase C family.
-
(1999)
Cell
, vol.98
, pp. 59-68
-
-
Jamora, C.1
Tamanouye, N.2
Van Lint, J.3
Laudenslager, J.4
Vandenheede, J.R.5
Faulkner, D.J.6
Malhotra, V.7
-
47
-
-
0033577863
-
Fusogenic domains of Golgi membranes are sequestered into specialized regions of the stack that can be released by mechanical fragmentation
-
Dominguez M., Fazel A., Dahan S., Lovell J., Hermo L., Claude A., Melançon P., Bergeron J.J. Fusogenic domains of Golgi membranes are sequestered into specialized regions of the stack that can be released by mechanical fragmentation. J Cell Biol. 145:1999;673-688.
-
(1999)
J Cell Biol
, vol.145
, pp. 673-688
-
-
Dominguez, M.1
Fazel, A.2
Dahan, S.3
Lovell, J.4
Hermo, L.5
Claude, A.6
Melançon, P.7
Bergeron, J.J.8
-
48
-
-
0033549551
-
A role for the vesicle tethering protein, p115, in the post-mitotic stacking of reassembling Golgi cisternae in a cell-free system
-
Using an in vitro Golgi reassembly assay, this study provides evidence that p115, giantin and GM130 cooperate in two processes: cisternal regrowth and cisternal docking. The docking step is followed by a stable GRASP65-dependent stacking interaction.
-
Shorter J., Warren G. A role for the vesicle tethering protein, p115, in the post-mitotic stacking of reassembling Golgi cisternae in a cell-free system. J Cell Biol. 146:1999;57-70. Using an in vitro Golgi reassembly assay, this study provides evidence that p115, giantin and GM130 cooperate in two processes: cisternal regrowth and cisternal docking. The docking step is followed by a stable GRASP65-dependent stacking interaction.
-
(1999)
J Cell Biol
, vol.146
, pp. 57-70
-
-
Shorter, J.1
Warren, G.2
-
49
-
-
0033568489
-
GRASP55, a second mammalian GRASP protein involved in the stacking of Golgi cisternae in a cell-free system
-
Shorter J., Watson R., Giannakou M.E., Clarke M., Warren G., Barr F.A. GRASP55, a second mammalian GRASP protein involved in the stacking of Golgi cisternae in a cell-free system. EMBO J. 18:1999;4949-4960.
-
(1999)
EMBO J
, vol.18
, pp. 4949-4960
-
-
Shorter, J.1
Watson, R.2
Giannakou, M.E.3
Clarke, M.4
Warren, G.5
Barr, F.A.6
-
50
-
-
0030662715
-
GRASP65, a protein involved in the stacking of Golgi cisternae
-
Barr F.A., Puype M., Vandekerckhove J., Warren G. GRASP65, a protein involved in the stacking of Golgi cisternae. Cell. 91:1997;253-262.
-
(1997)
Cell
, vol.91
, pp. 253-262
-
-
Barr, F.A.1
Puype, M.2
Vandekerckhove, J.3
Warren, G.4
-
51
-
-
0033048782
-
2 antagonists
-
2 antagonists are shown to disrupt tubular connections between Golgi stacks in living vertebrate cells and to prevent Golgi membrane tubulation in vitro.
-
2 antagonists are shown to disrupt tubular connections between Golgi stacks in living vertebrate cells and to prevent Golgi membrane tubulation in vitro.
-
(1999)
Mol Biol Cell
, vol.10
, pp. 1763-1782
-
-
De Figueiredo, P.1
Polizotto, R.S.2
Drecktrah, D.3
Brown, W.J.4
-
52
-
-
0033604565
-
CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid
-
The protein CtBP/BARS is a target for ADP-ribosylation by brefeldin A. This paper suggests that CtBP/BARS severs Golgi tubules in a reaction involving the acyl-CoA-dependent acylation of lysophospatidic acid.
-
Weigert R., Silletta M.G., Spanò S., Turacchio G., Cericola C., Colanzi A., Senatore S., Mancini R., Polishchuk E.V., Salmona M.et al. CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature. 402:1999;429-433. The protein CtBP/BARS is a target for ADP-ribosylation by brefeldin A. This paper suggests that CtBP/BARS severs Golgi tubules in a reaction involving the acyl-CoA-dependent acylation of lysophospatidic acid.
-
(1999)
Nature
, vol.402
, pp. 429-433
-
-
Weigert, R.1
Silletta, M.G.2
Spanò, S.3
Turacchio, G.4
Cericola, C.5
Colanzi, A.6
Senatore, S.7
Mancini, R.8
Polishchuk, E.V.9
Salmona, M.10
-
53
-
-
0028855261
-
The plant Golgi apparatus: Structure, functional organization and trafficking mechanisms
-
Staehelin L.A., Moore I. The plant Golgi apparatus: structure, functional organization and trafficking mechanisms. Annu Rev Plant Physiol Plant Mol Biol. 46:1995;261-288.
-
(1995)
Annu Rev Plant Physiol Plant Mol Biol
, vol.46
, pp. 261-288
-
-
Staehelin, L.A.1
Moore, I.2
-
54
-
-
0033526048
-
Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris and Saccharomyces cerevisiae
-
This paper proposes that Golgi structure in budding yeasts is determined by tER organization. In P. pastoris, Golgi cisternae form stacks next to discrete tER sites, whereas in S. cerevisiae, Golgi cisternae are scattered and the entire ER seems to function as a tER.
-
Rossanese O.W., Soderholm J., Bevis B.J., Sears I.B., O'Connor J., Williamson E.K., Glick B.S. Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris and Saccharomyces cerevisiae. J Cell Biol. 145:1999;69-81. This paper proposes that Golgi structure in budding yeasts is determined by tER organization. In P. pastoris, Golgi cisternae form stacks next to discrete tER sites, whereas in S. cerevisiae, Golgi cisternae are scattered and the entire ER seems to function as a tER.
-
(1999)
J Cell Biol
, vol.145
, pp. 69-81
-
-
Rossanese, O.W.1
Soderholm, J.2
Bevis, B.J.3
Sears, I.B.4
O'Connor, J.5
Williamson, E.K.6
Glick, B.S.7
-
55
-
-
0031460148
-
The mechanism of Golgi segregation during mitosis is cell type-specific
-
Stanley H., Botas J., Malhotra V. The mechanism of Golgi segregation during mitosis is cell type-specific. Proc Natl Acad Sci USA. 94:1997;14 467-14 470.
-
(1997)
Proc Natl Acad Sci USA
, vol.94
, pp. 14467-14470
-
-
Stanley, H.1
Botas, J.2
Malhotra, V.3
-
56
-
-
0031893757
-
Retrograde transport of Golgi-localized proteins to the ER
-
Cole N.B., Ellenberg J., Song J., DiEuliis D., Lippincott-Schwartz J. Retrograde transport of Golgi-localized proteins to the ER. J Cell Biol. 140:1998;1-15.
-
(1998)
J Cell Biol
, vol.140
, pp. 1-15
-
-
Cole, N.B.1
Ellenberg, J.2
Song, J.3
Dieuliis, D.4
Lippincott-Schwartz, J.5
-
57
-
-
0033571602
-
Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells
-
•].
-
•].
-
(1999)
J Cell Biol
, vol.147
, pp. 743-759
-
-
White, J.1
Johannes, L.2
Mallard, F.3
Girod, A.4
Grill, S.5
Reinsch, S.6
Keller, P.7
Tzschaschel, B.8
Echard, A.9
Goud, B.10
Stelzer, E.H.K.11
-
58
-
-
0033224214
-
Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum
-
•] demonstrate that rab6 regulates a COPI-independent retrograde pathway, which transports resident Golgi proteins and certain toxins from the Golgi to the ER.
-
•] demonstrate that rab6 regulates a COPI-independent retrograde pathway, which transports resident Golgi proteins and certain toxins from the Golgi to the ER.
-
(1999)
Nat Cell Biol
, vol.1
, pp. 423-430
-
-
Girod, A.1
Storrie, B.2
Simpson, J.C.3
Johannes, L.4
Goud, B.5
Roberts, L.M.6
Lord, J.M.7
Nilsson, T.8
Pepperkok, R.9
-
60
-
-
0032845689
-
The nuclear envelope serves as an intermediary between the ER and Golgi complex in the intracellular parasite Toxoplasma gondii
-
Hager K.M., Striepen B., Tilney L.G., Roos D.S. The nuclear envelope serves as an intermediary between the ER and Golgi complex in the intracellular parasite Toxoplasma gondii. J Cell Sci. 112:1999;2631-2638.
-
(1999)
J Cell Sci
, vol.112
, pp. 2631-2638
-
-
Hager, K.M.1
Striepen, B.2
Tilney, L.G.3
Roos, D.S.4
-
61
-
-
0032144201
-
Stacks on tracks: The plant Golgi apparatus traffics on an actin/ER network
-
Boevink P., Oparka K., Santa Cruz S., Martin B., Betteridge A., Hawes C. Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J. 15:1998;441-447.
-
(1998)
Plant J
, vol.15
, pp. 441-447
-
-
Boevink, P.1
Oparka, K.2
Santa Cruz, S.3
Martin, B.4
Betteridge, A.5
Hawes, C.6
-
62
-
-
0342288633
-
Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system
-
Nebenfuhr A., Gallagher L.A., Dunahay T.G., Frohlick J.A., Mazurkiewicz A.M., Meehl J.B., Staehelin L.A. Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol. 121:1999;1127-1142.
-
(1999)
Plant Physiol
, vol.121
, pp. 1127-1142
-
-
Nebenfuhr, A.1
Gallagher, L.A.2
Dunahay, T.G.3
Frohlick, J.A.4
Mazurkiewicz, A.M.5
Meehl, J.B.6
Staehelin, L.A.7
-
64
-
-
0033066621
-
Forward and retrograde trafficking in mitotic animal cells. ER-Golgi transport arrest restricts protein export from the ER into COPII-coated structures
-
•] and Hammond and Glick (unpublished data) show that tER sites are long-lived ER subdomains. Vertebrate tER sites are virtually immobile, but their properties change during mitosis.
-
•] and Hammond and Glick (unpublished data) show that tER sites are long-lived ER subdomains. Vertebrate tER sites are virtually immobile, but their properties change during mitosis.
-
(1999)
J Cell Sci
, vol.112
, pp. 589-600
-
-
Farmaki, T.1
Ponnambalam, S.2
Prescott, A.R.3
Clausen, H.4
Tang, B.-L.5
Hong, W.6
Lucocq, J.M.7
-
65
-
-
0029972823
-
Golgi dispersal during microtubule disruption: Regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites
-
Cole N.B., Sciaky N., Marotta A., Song J., Lippincott-Schwartz J. Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites. Mol Biol Cell. 7:1996;631-650.
-
(1996)
Mol Biol Cell
, vol.7
, pp. 631-650
-
-
Cole, N.B.1
Sciaky, N.2
Marotta, A.3
Song, J.4
Lippincott-Schwartz, J.5
-
66
-
-
0032517823
-
Recycling of Golgi-resident glycosyltransferases through the ER reveals a novel pathway and provides an explanation for nocodazole-induced Golgi scattering
-
Storrie B., White J., Röttger S., Stelzer E.H.K., Suganuma T., Nilsson T. Recycling of Golgi-resident glycosyltransferases through the ER reveals a novel pathway and provides an explanation for nocodazole-induced Golgi scattering. J Cell Biol. 143:1998;1505-1521.
-
(1998)
J Cell Biol
, vol.143
, pp. 1505-1521
-
-
Storrie, B.1
White, J.2
Röttger, S.3
Stelzer, E.H.K.4
Suganuma, T.5
Nilsson, T.6
-
67
-
-
0033000412
-
Coalescence of Golgi fragments in microtubule-deprived living cells
-
Polishchuk R.S., Polishchuk E.V., Mironov A.A. Coalescence of Golgi fragments in microtubule-deprived living cells. Eur J Cell Biol. 78:1999;170-185.
-
(1999)
Eur J Cell Biol
, vol.78
, pp. 170-185
-
-
Polishchuk, R.S.1
Polishchuk, E.V.2
Mironov, A.A.3
-
68
-
-
0032757458
-
2 antagonists inhibit nocodazole-induced Golgi ministack formation: Evidence of an ER intermediate and constitutive cycling
-
2 antagonists inhibit nocodazole-induced Golgi ministack formation: evidence of an ER intermediate and constitutive cycling. Mol Biol Cell. 10:1999;4021-4032.
-
(1999)
Mol Biol Cell
, vol.10
, pp. 4021-4032
-
-
Drecktrah, D.1
Brown, W.J.2
-
69
-
-
0032559299
-
Signaling via mitogen-activated protein kinase kinase (MEK1) is required for Golgi fragmentation during mitosis
-
Acharya U., Mallabiabarrena A., Acharya J.K., Malhotra V. Signaling via mitogen-activated protein kinase kinase (MEK1) is required for Golgi fragmentation during mitosis. Cell. 92:1998;183-192.
-
(1998)
Cell
, vol.92
, pp. 183-192
-
-
Acharya, U.1
Mallabiabarrena, A.2
Acharya, J.K.3
Malhotra, V.4
-
70
-
-
0032544440
-
Cdc2 kinase directly phosphorylates the cis-Golgi matrix protein GM130 and is required for Golgi fragmentation in mitosis
-
Lowe M., Rabouille C., Nakamura N., Watson R., Jackman M., Jamsa E., Rahman D., Pappin D.J., Warren G. Cdc2 kinase directly phosphorylates the cis-Golgi matrix protein GM130 and is required for Golgi fragmentation in mitosis. Cell. 94:1998;783-793.
-
(1998)
Cell
, vol.94
, pp. 783-793
-
-
Lowe, M.1
Rabouille, C.2
Nakamura, N.3
Watson, R.4
Jackman, M.5
Jamsa, E.6
Rahman, D.7
Pappin, D.J.8
Warren, G.9
-
71
-
-
0034678369
-
A specific activation of the mitogen activated protein kinase kinase 1 (MEK1) is required for Golgi fragmentation during mitosis
-
New evidence substantiates the authors' earlier finding that MEK1 regulates mitotic Golgi breakdown in vertebrate cells.
-
Colanzi A., Deerinck T.J., Ellisman M.H., Malhotra V. A specific activation of the mitogen activated protein kinase kinase 1 (MEK1) is required for Golgi fragmentation during mitosis. J Cell Biol. 149:2000;331-339. New evidence substantiates the authors' earlier finding that MEK1 regulates mitotic Golgi breakdown in vertebrate cells.
-
(2000)
J Cell Biol
, vol.149
, pp. 331-339
-
-
Colanzi, A.1
Deerinck, T.J.2
Ellisman, M.H.3
Malhotra, V.4
-
72
-
-
0034678397
-
MEK and cdc2 kinase are sequentially required for Golgi disassembly in MDCK cells by the mitotic Xenopus extracts
-
Using a morphological analysis of permeabilized vertebrate cells, the authors conclude that MEK and cdc2 regulate sequential steps of mitotic Golgi breakdown.
-
Kano F., Takenaka K., Yamamoto A., Nagayama K., Nishida E., Murata M. MEK and cdc2 kinase are sequentially required for Golgi disassembly in MDCK cells by the mitotic Xenopus extracts. J Cell Biol. 149:2000;357-368. Using a morphological analysis of permeabilized vertebrate cells, the authors conclude that MEK and cdc2 regulate sequential steps of mitotic Golgi breakdown.
-
(2000)
J Cell Biol
, vol.149
, pp. 357-368
-
-
Kano, F.1
Takenaka, K.2
Yamamoto, A.3
Nagayama, K.4
Nishida, E.5
Murata, M.6
-
73
-
-
0034678436
-
The mitotic phosphorylation cycle of the cis-Golgi matrix protein GM130
-
This in vivo study shows that GM130 is phosphorylated early in mitosis, and is dephosphorylated at the end of mitosis by the protein phosphatase PP2A.
-
Lowe M., Gonatas N.K., Warren G. The mitotic phosphorylation cycle of the cis-Golgi matrix protein GM130. J Cell Biol. 149:2000;341-356. This in vivo study shows that GM130 is phosphorylated early in mitosis, and is dephosphorylated at the end of mitosis by the protein phosphatase PP2A.
-
(2000)
J Cell Biol
, vol.149
, pp. 341-356
-
-
Lowe, M.1
Gonatas, N.K.2
Warren, G.3
-
74
-
-
0033999010
-
The role of the tethering proteins p115 and GM130 in transport through the Golgi apparatus in vivo
-
Seemann J., Jokitalo E.J., Warren G. The role of the tethering proteins p115 and GM130 in transport through the Golgi apparatus in vivo. Mol Biol Cell. 11:2000;635-645.
-
(2000)
Mol Biol Cell
, vol.11
, pp. 635-645
-
-
Seemann, J.1
Jokitalo, E.J.2
Warren, G.3
-
75
-
-
0026936078
-
Reorganization of the Golgi complex in association with mitosis: Redistribution of mannosidase II to the endoplasmic reticulum and effects of brefeldin A
-
Thyberg J., Moskalewski S. Reorganization of the Golgi complex in association with mitosis: redistribution of mannosidase II to the endoplasmic reticulum and effects of brefeldin A. J Submicrosc Cytol Pathol. 24:1992;495-508.
-
(1992)
J Submicrosc Cytol Pathol
, vol.24
, pp. 495-508
-
-
Thyberg, J.1
Moskalewski, S.2
-
76
-
-
0033544712
-
Golgi membranes are absorbed into and reemerge from the ER during mitosis
-
From quantitative imaging and fluorescence photobleaching data, this paper concludes that Golgi membranes fuse with the ER during mitosis and that new Golgi structures form at the end of mitosis by export from the ER.
-
Zaal K.J., Smith C.L., Polishchuk R.S., Altan N., Cole N.B., Ellenberg J., Hirschberg K., Presley J.F., Roberts T.H., Siggia E.et al. Golgi membranes are absorbed into and reemerge from the ER during mitosis. Cell. 99:1999;589-601. From quantitative imaging and fluorescence photobleaching data, this paper concludes that Golgi membranes fuse with the ER during mitosis and that new Golgi structures form at the end of mitosis by export from the ER.
-
(1999)
Cell
, vol.99
, pp. 589-601
-
-
Zaal, K.J.1
Smith, C.L.2
Polishchuk, R.S.3
Altan, N.4
Cole, N.B.5
Ellenberg, J.6
Hirschberg, K.7
Presley, J.F.8
Roberts, T.H.9
Siggia, E.10
|