-
4
-
-
84930010586
-
-
S. R. Lunt, P. G. Santangelo, N. S. Lewis, J. Vac. Sci. Technol. B 1991, 9, 2333.
-
(1991)
J. Vac. Sci. Technol. B
, vol.9
, pp. 2333
-
-
Lunt, S.R.1
Santangelo, P.G.2
Lewis, N.S.3
-
5
-
-
0000072272
-
-
G. C. Lisensky, R. L. Penn, C. J. Murphy, A. B. Ellis, Science 1990, 248, 840.
-
(1990)
Science
, vol.248
, pp. 840
-
-
Lisensky, G.C.1
Penn, R.L.2
Murphy, C.J.3
Ellis, A.B.4
-
7
-
-
36449005089
-
-
K. Asai, T. Miyashita, K. Ishigure, S. Fukatsu, J. Appl. Phys. 1995, 77, 1582.
-
(1995)
J. Appl. Phys.
, vol.77
, pp. 1582
-
-
Asai, K.1
Miyashita, T.2
Ishigure, K.3
Fukatsu, S.4
-
8
-
-
0030219543
-
-
B. Sweryda-Krawiec, R. R. Chandler-Henderson, J. L. Coffer, Y. G. Rho, R. F. Pinizzotto, J. Phys. Chem. 1996, 100, 13 776.
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 13
-
-
Sweryda-Krawiec, B.1
Chandler-Henderson, R.R.2
Coffer, J.L.3
Rho, Y.G.4
Pinizzotto, R.F.5
-
9
-
-
0342841825
-
-
note
-
While complete passivation of a semiconductor surface means that there are no (more) electronically active states in the gap (see also [18]), in the more common case of partial passivation use of the concept tells us nothing about changes in surface-state positions and in their density (including creation and annihilation of states).
-
-
-
-
12
-
-
0343276617
-
-
note
-
A discussion of the generalized acid-base concept, derived from the so-called "Usanovich" definition, can be found in [10], pp. 292ff. A discussion on the frontier orbital form of the Usanovich definition, as used here, can be found in [11], pp. 181ff.
-
-
-
-
14
-
-
0002088017
-
-
R. J. Nelson, J. S. Williams, H. J. Leamy, B. Miller, H. C. Casey, B. A. Parkinson, A. Heller, Appl. Phys. Lett. 1980, 36, 76.
-
(1980)
Appl. Phys. Lett.
, vol.36
, pp. 76
-
-
Nelson, R.J.1
Williams, J.S.2
Leamy, H.J.3
Miller, B.4
Casey, H.C.5
Parkinson, B.A.6
Heller, A.7
-
15
-
-
0003796643
-
-
A. B. Ellis, R. J. Brainard, K. D. Kepler, D. E. Moore, E. J. Winder, T. F. Kuech, G. C. Lisensky, J. Chem. Educ. 1997, 74, 680.
-
(1997)
J. Chem. Educ.
, vol.74
, pp. 680
-
-
Ellis, A.B.1
Brainard, R.J.2
Kepler, K.D.3
Moore, D.E.4
Winder, E.J.5
Kuech, T.F.6
Lisensky, G.C.7
-
16
-
-
4243361495
-
-
Y. Liu, A. Komrowski, A. Kummel, Phys. Rev. Lett. 1998, 81, 413.
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 413
-
-
Liu, Y.1
Komrowski, A.2
Kummel, A.3
-
17
-
-
0031552585
-
-
R. Cohen, S. Bastide, D. Cahen, J. Libman, A. Shanzer, Y. Rosenwaks, Adv. Mater. 1997, 9, 746.
-
(1997)
Adv. Mater.
, vol.9
, pp. 746
-
-
Cohen, R.1
Bastide, S.2
Cahen, D.3
Libman, J.4
Shanzer, A.5
Rosenwaks, Y.6
-
18
-
-
0343712127
-
-
note
-
In the case of strong molecule-surface interaction, all of the empty and the filled surface states could be "pushed" out of the bandgap, leading to complete surface passivation. Proper oxidation of Si leads to a situation that is very close to this (although still not sufficient to satisfy today's advanced device requirements).
-
-
-
-
19
-
-
0342841819
-
-
note
-
Within the scope of this paper, we do not discuss molecular effects on surface recombination rates. This is because, for the GaAs surfaces studied here, time-resolved photoluminescence measurements revealed no significant molecular effect. For an experimental and theoretical analysis of molecular effects on surface recombination rates at other semiconductor surfaces, see [29].
-
-
-
-
20
-
-
0343276616
-
-
M.Sc. Thesis, Weizmann Institute of Science, Rehovot
-
A. Vilan, M.Sc. Thesis, Weizmann Institute of Science, Rehovot 1996.
-
(1996)
-
-
Vilan, A.1
-
21
-
-
0000311936
-
-
S. Bastide, R. Butruille, D. Cahen, A. Dutta, J. Libman, A. Shanzer, L. Sun, A. Vilan, J. Phys. Chem. 1997, 101, 2678.
-
(1997)
J. Phys. Chem.
, vol.101
, pp. 2678
-
-
Bastide, S.1
Butruille, R.2
Cahen, D.3
Dutta, A.4
Libman, J.5
Shanzer, A.6
Sun, L.7
Vilan, A.8
-
24
-
-
0032117002
-
-
O. B. Aphek, L. Kronik, M. Leibovitch, Y. Shapira, Surf. Sci. 1998, 409, 485.
-
(1998)
Surf. Sci.
, vol.409
, pp. 485
-
-
Aphek, O.B.1
Kronik, L.2
Leibovitch, M.3
Shapira, Y.4
-
25
-
-
0342406898
-
-
note
-
This difference in surface state density between type I and II samples is probably due to differences in the manufacturing processes used by the two suppliers.
-
-
-
-
26
-
-
0343712122
-
-
note
-
While electrons in surface energy levels that lie inside the "forbidden" bandgap are localized on and very near the surface, those in energy levels outside the bandgap are much less so. Such "surface resonances" are only to a limited extent localized in the surface region, are degenerate with the bulk states, and can mix with them [3]. There is no quantitative measure of how strong surface localization should be in order to be defined as a surface resonance [27].
-
-
-
-
28
-
-
0343712123
-
-
note
-
Considering the uncertainty in the LUMO energy level of the DHDC molecule, we assume that the molecular level, after interaction, is still above the Fermi level.
-
-
-
-
29
-
-
0343712120
-
-
in press
-
R. Cohen, L. Kronik, A. Shanzer, D. Cahen, A. Liu, Y. Rosenwaks, J. K. Lorenz, A. B. Ellis, J. Am. Chem. Soc., in press.
-
J. Am. Chem. Soc.
-
-
Cohen, R.1
Kronik, L.2
Shanzer, A.3
Cahen, D.4
Liu, A.5
Rosenwaks, Y.6
Lorenz, J.K.7
Ellis, A.B.8
|