메뉴 건너뛰기




Volumn 21, Issue 6-7, 2000, Pages 493-501

Combining DEKF algorithm and trace rule for fast on-line invariance extraction and recognition

Author keywords

EKF Algorithm; Neural networks; Pattern recognition; Pruning; Trace Rule

Indexed keywords

ALGORITHMS; COMPUTER SIMULATION; FEATURE EXTRACTION; KALMAN FILTERING; NEURAL NETWORKS;

EID: 0033729381     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0167-8655(00)00013-1     Document Type: Article
Times cited : (2)

References (17)
  • 1
    • 0032206420 scopus 로고    scopus 로고
    • Periodic activation function for fast on-line EKF training and pruning
    • Chang S.J., Wong K.W, Leung C.S. Periodic activation function for fast on-line EKF training and pruning. Electronics Letters. 34:1998;2255-2256.
    • (1998) Electronics Letters , vol.34 , pp. 2255-2256
    • Chang, S.J.1    Wong, K.W.2    Leung, C.S.3
  • 2
    • 0000188120 scopus 로고
    • Learning invariance from transformation sequence
    • Foldiak P. Learning invariance from transformation sequence. Neural Computation. 3:1991;194-200.
    • (1991) Neural Computation , vol.3 , pp. 194-200
    • Foldiak, P.1
  • 3
    • 0026841022 scopus 로고
    • Real-time learning algorithm for a multilayered neural network based on the extended Kalman filter
    • Iiguni Y., Sakai H., Tokumaru H. Real-time learning algorithm for a multilayered neural network based on the extended Kalman filter. IEEE Transactions on Signal Processing. 40:1992;959-967.
    • (1992) IEEE Transactions on Signal Processing , vol.40 , pp. 959-967
    • Iiguni, Y.1    Sakai, H.2    Tokumaru, H.3
  • 5
    • 0030574155 scopus 로고    scopus 로고
    • On-line training and pruning for recursive least square algorithms
    • Leung C.S., Wong K.W., Sum P.F., Chan L.W. On-line training and pruning for recursive least square algorithms. Electronics Letters. 32:1996;2152-2153.
    • (1996) Electronics Letters , vol.32 , pp. 2152-2153
    • Leung, C.S.1    Wong, K.W.2    Sum, P.F.3    Chan, L.W.4
  • 6
    • 0011321875 scopus 로고
    • The performance of the neocognitron with various S-cell and C-cell transfer functions
    • Produced in the Department of Electrical Engineering, University of Queesland, Queesland 4072, Australia
    • Lovell, D.R., Tsoi, A.C., 1992. The performance of the neocognitron with various S-cell and C-cell transfer functions. Paper posted to the Connectionists internet mail group. Produced in the Department of Electrical Engineering, University of Queesland, Queesland 4072, Australia.
    • (1992) Paper Posted to the Connectionists Internet Mail Group
    • Lovell, D.R.1    Tsoi, A.C.2
  • 7
    • 0032484858 scopus 로고    scopus 로고
    • Energy function for learning invariant in multilayer perceptron
    • Peng H., Sha L., Gan Q., Wei Y. Energy function for learning invariant in multilayer perceptron. Electronics Letters. 34:1998a;292-294.
    • (1998) Electronics Letters , vol.34 , pp. 292-294
    • Peng, H.1    Sha, L.2    Gan, Q.3    Wei, Y.4
  • 8
    • 0032049584 scopus 로고    scopus 로고
    • Combining adaptive sigmoid packet and trace neural network for fast invariance-learning
    • Peng H., Sha L., Gan Q., Wei Y. Combining adaptive sigmoid packet and trace neural network for fast invariance-learning. Electronics Letters. 34:1998b;898-899.
    • (1998) Electronics Letters , vol.34 , pp. 898-899
    • Peng, H.1    Sha, L.2    Gan, Q.3    Wei, Y.4
  • 9
    • 0031194103 scopus 로고    scopus 로고
    • Connection pruning with static and adaptive pruning schedules
    • Prechelt L. Connection pruning with static and adaptive pruning schedules. Neurocomputing. 16:1997;49-61.
    • (1997) Neurocomputing , vol.16 , pp. 49-61
    • Prechelt, L.1
  • 10
    • 0032099978 scopus 로고    scopus 로고
    • Automatic early stopping using cross validation: Quantifying the criteria
    • Prechelt L. Automatic early stopping using cross validation: quantifying the criteria. Neural Networks. 11:1998;761-767.
    • (1998) Neural Networks , vol.11 , pp. 761-767
    • Prechelt, L.1
  • 12
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • Robbins H., Monro S. A stochastic approximation method. Ann. Math. Stat. 22:1951;400-407.
    • (1951) Ann. Math. Stat. , vol.22 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 13
    • 0026923239 scopus 로고
    • Optimal filtering algorithm for fast learning in feedforward neural networks
    • Shah S., Palmieri F. Optimal filtering algorithm for fast learning in feedforward neural networks. Neural Networks. 5:1992;779-787.
    • (1992) Neural Networks , vol.5 , pp. 779-787
    • Shah, S.1    Palmieri, F.2
  • 15
    • 0000076209 scopus 로고
    • Asymptotic convergence of backpropagation
    • Tesauro G., He Y., Ahmad S. Asymptotic convergence of backpropagation. Neural Computation. 1:1989;382-391.
    • (1989) Neural Computation , vol.1 , pp. 382-391
    • Tesauro, G.1    He, Y.2    Ahmad, S.3
  • 16
    • 0030476783 scopus 로고    scopus 로고
    • Using spatio-temporal correlations to learn invariant object recognition
    • Wallis G. Using spatio-temporal correlations to learn invariant object recognition. Neural Networks. 9(9):1996;1513-1519.
    • (1996) Neural Networks , vol.9 , Issue.9 , pp. 1513-1519
    • Wallis, G.1
  • 17
    • 0031569902 scopus 로고    scopus 로고
    • Optimal, unsupervised learning in invariant object recognition
    • Wallis G., Baddeley R. Optimal, unsupervised learning in invariant object recognition. Neural Computation. 9(4):1997;883-894.
    • (1997) Neural Computation , vol.9 , Issue.4 , pp. 883-894
    • Wallis, G.1    Baddeley, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.