-
3
-
-
0345569857
-
-
The data set includes topographic profiles of the northern hemisphere collected during the capture orbit, aerobraking hiatus orbit, and Science Phasing Orbit phases of the Mars Global Surveyor mission during the period 15 September 1997 to 31 July 1998. and circum-Mars profiles spanning the latitude range 87°N to 87°S for the period 1 March to 15 April 1999
-
The data set includes topographic profiles of the northern hemisphere collected during the capture orbit, aerobraking hiatus orbit, and Science Phasing Orbit phases of the Mars Global Surveyor mission during the period 15 September 1997 to 31 July 1998. and circum-Mars profiles spanning the latitude range 87°N to 87°S for the period 1 March to 15 April 1999.
-
-
-
-
4
-
-
7144222761
-
-
D. E. Smith et al., Science 279, 1686 (1998).
-
(1998)
Science
, vol.279
, pp. 1686
-
-
Smith, D.E.1
-
6
-
-
0001509667
-
-
L. E. Roth, G. S. Downs, R. S. Saunders, G. Schubert, Icarus 42, 287 (1980); G. S. Downs, P. J. Mouginis-Mark, S. H. Zisk, T. W. Thompson, J. Geophys. Res. 87, 9747 (1982).
-
(1980)
Icarus
, vol.42
, pp. 287
-
-
Roth, L.E.1
Downs, G.S.2
Saunders, R.S.3
Schubert, G.4
-
7
-
-
0001509667
-
-
L. E. Roth, G. S. Downs, R. S. Saunders, G. Schubert, Icarus 42, 287 (1980); G. S. Downs, P. J. Mouginis-Mark, S. H. Zisk, T. W. Thompson, J. Geophys. Res. 87, 9747 (1982).
-
(1982)
J. Geophys. Res.
, vol.87
, pp. 9747
-
-
Downs, G.S.1
Mouginis-Mark, P.J.2
Zisk, S.H.3
Thompson, T.W.4
-
8
-
-
0000082458
-
-
A. J. Kliore, D. L. Cain, G. Fjeldbo, B. L. Seidel, M. J. Sykes, Icarus 17, 484 (1972); G. F. Lindal et al., J. Geophys. Res. 84, 8443 (1979).
-
(1972)
Icarus
, vol.17
, pp. 484
-
-
Kliore, A.J.1
Cain, D.L.2
Fjeldbo, G.3
Seidel, B.L.4
Sykes, M.J.5
-
9
-
-
0000082458
-
-
A. J. Kliore, D. L. Cain, G. Fjeldbo, B. L. Seidel, M. J. Sykes, Icarus 17, 484 (1972); G. F. Lindal et al., J. Geophys. Res. 84, 8443 (1979).
-
(1979)
J. Geophys. Res.
, vol.84
, pp. 8443
-
-
Lindal, G.F.1
-
10
-
-
0001282541
-
-
L. A. Soderblom and D. B. Wenner, Icarus 34, 622 (1978); S. S. C. Wu, P. A. Garcia, R. Jordan, F. J. Schafer, Nature 309, 432 (1984).
-
(1978)
Icarus
, vol.34
, pp. 622
-
-
Soderblom, L.A.1
Wenner, D.B.2
-
11
-
-
0021335522
-
-
L. A. Soderblom and D. B. Wenner, Icarus 34, 622 (1978); S. S. C. Wu, P. A. Garcia, R. Jordan, F. J. Schafer, Nature 309, 432 (1984).
-
(1984)
Nature
, vol.309
, pp. 432
-
-
Wu, S.S.C.1
Garcia, P.A.2
Jordan, R.3
Schafer, F.J.4
-
12
-
-
0006809188
-
-
C. W. Hord, Icarus 17, 443 (1972); B. Conrath et al., J. Geophys. Res. 78, 4267 (1973).
-
(1972)
Icarus
, vol.17
, pp. 443
-
-
Hord, C.W.1
-
13
-
-
0006809188
-
-
C. W. Hord, Icarus 17, 443 (1972); B. Conrath et al., J. Geophys. Res. 78, 4267 (1973).
-
(1973)
J. Geophys. Res.
, vol.78
, pp. 4267
-
-
Conrath, B.1
-
15
-
-
0344707706
-
-
note
-
In the current topographic model, which combines elliptical and mapping orbit observations, ground shots with valid spacecraft-attitude knowledge, with pointing angle <6° except where off-nadir ranging was performed to cover the north pole, numbered 26.6 million. All ground shots were projected sinusoidally and binned on a 1° by 1° equal-area global grid, and the median topography and location coordinates were obtained. Planetary radii were projected and similarly binned. A 36th degree-and-order harmonic model was fit to the data by least squares. This harmonic model was used in the determination of the best-fit ellipsoid.
-
-
-
-
16
-
-
0345138275
-
-
note
-
The MOLA instrument measures the round trip time of flight of individual laser pulses between the MGS spacecraft and the martian surface. Each measurement is tagged at the transmit time; the receive time of the pulse is derived from the time of flight and the transmit time. The spacecraft inertial positions are derived for both transmit and receive times, and the light path is traced from the transmit position to the surface (accounting for spacecraft attitude) and back to the spacecraft at the receive position and time. The martian radius is obtained for the coordinates of the "bounce point" of the laser pulse on the surface in a COM reference frame. In the MGS mapping orbit the instrument's 10-Hz sampling rate combined with the laser beam divergence of 400 μrad results in a surface spot size of ∼160 m and shot-to-shot spacings of ∼330 m. The precision of MOLA range measurements approaches the limiting resolution of 37.5 cm on smooth level surfaces and may increase up to ∼10 m on 30° slopes. The accuracy of the spot location in latitude and longitude is limited by the knowledge of the spacecraft pointing at 1 to 3 mrads (400 to 2000 m on the surface, depending on the spacecraft altitude) and spacecraft position uncertainties of a few hundred meters. The estimate of global topographic accuracy includes contributions from radial orbit error (7 m rms) (63), instrument error (3 m rms), and geoid error (±10 m rms) (40). The accuracy estimate for the shape of the planet is ±8 m. A comparison of the binned altimeter data set with the locations of the Viking 1 and 2 and Pathfinder landing sites shows good agreement (Table 1).
-
-
-
-
17
-
-
0030707833
-
-
W. M. Folkner, C. F. Yoder, D. N. Yuan, E. M. Standish, R. A. Preston, Science 278, 1749 (1997); M. T. Zuber and D. E. Smith, J. Geophys. Res. 102, 28673 (1997).
-
(1997)
Science
, vol.278
, pp. 1749
-
-
Folkner, W.M.1
Yoder, C.F.2
Yuan, D.N.3
Standish, E.M.4
Preston, R.A.5
-
18
-
-
17044399425
-
-
W. M. Folkner, C. F. Yoder, D. N. Yuan, E. M. Standish, R. A. Preston, Science 278, 1749 (1997); M. T. Zuber and D. E. Smith, J. Geophys. Res. 102, 28673 (1997).
-
(1997)
J. Geophys. Res.
, vol.102
, pp. 28673
-
-
Zuber, M.T.1
Smith, D.E.2
-
19
-
-
0344275771
-
-
note
-
This analysis uses the geoid from the MGM890i gravitational field model of Mars, derived from MGS gravity calibration orbit Doppler tracking, MGS elliptical orbit tracking, and historical tracking data from the Viking 1 and 2 and Mariner 9 orbiters (40). Zero elevation is defined as the equipotential surface whose average value at the equator is equal to 3,396,00 m.
-
-
-
-
20
-
-
0001242891
-
-
D. L. Turcotte, R. J. Willemann, W. F. Haxby, J. Norberry, J. Geophys. Res. 86, 3951 (1981).
-
(1981)
J. Geophys. Res.
, vol.86
, pp. 3951
-
-
Turcotte, D.L.1
Willemann, R.J.2
Haxby, W.F.3
Norberry, J.4
-
21
-
-
0344707705
-
-
note
-
The best-fit ellipsoid, which includes an estimation of the COM-COF offsets and the directions of the principal axes, has an rms fit of 1.9 km. The new global shape parameters are in close agreement with values obtained in an earlier long-wavelength model based on reanalysis of Viking and Mariner occultation measurements (37). x,y,z are body-fixed coordinates in a right-handed COM system in which the z axis is the rotation axis and the x axis is the origin of longitude.
-
-
-
-
22
-
-
0003797327
-
-
Princeton Univ. Press, Princeton, NJ
-
T. A. Mutch, R. E. Arvidson, J. W. Head, K. L. Jones, R. S. Saunders, The Geology of Mars (Princeton Univ. Press, Princeton, NJ, 1976); M. H. Carr, The Surface of Mars (Yale Univ. Press, New Haven, CT, 1981).
-
(1976)
The Geology of Mars
-
-
Mutch, T.A.1
Arvidson, R.E.2
Head, J.W.3
Jones, K.L.4
Saunders, R.S.5
-
23
-
-
0003859766
-
-
Yale Univ. Press, New Haven, CT
-
T. A. Mutch, R. E. Arvidson, J. W. Head, K. L. Jones, R. S. Saunders, The Geology of Mars (Princeton Univ. Press, Princeton, NJ, 1976); M. H. Carr, The Surface of Mars (Yale Univ. Press, New Haven, CT, 1981).
-
(1981)
The Surface of Mars
-
-
Carr, M.H.1
-
24
-
-
0345569854
-
-
note
-
q, which is commonly divided by 0.673 (the IQS of a normal distribution), is a robust estimator in the sense that it is not sensitive to outliers in as much as half of the population or as little as a quarter.
-
-
-
-
25
-
-
0003822905
-
-
D. H. Scott and K. L. Tanaka, U.S. Geol. Surv Misc. Inv. Series Map I-1802-A (1986); R. Greeley and J. E. Guest, U.S. Geol. Surv. Misc. Inv. Series Map I-180Z-B (1987); K. L. Tanaka and D. H. Scott, U.S. Geol. Surv. Misc. Inv. Series Map I-1802-C (1987). Mars is divided into three primary stratigraphic units. The Noachian system is the oldest and consists of ancient cratered terrain. The Hesperian overlies the Noachian and consists principally of ridged plains materials. The Amazonian system has the youngest relative age and is represented mainly by smooth plains.
-
(1986)
U.S. Geol. Surv Misc. Inv. Series Map I-1802-A
-
-
Scott, D.H.1
Tanaka, K.L.2
-
26
-
-
0006005608
-
-
D. H. Scott and K. L. Tanaka, U.S. Geol. Surv Misc. Inv. Series Map I-1802-A (1986); R. Greeley and J. E. Guest, U.S. Geol. Surv. Misc. Inv. Series Map I-180Z-B (1987); K. L. Tanaka and D. H. Scott, U.S. Geol. Surv. Misc. Inv. Series Map I-1802-C (1987). Mars is divided into three primary stratigraphic units. The Noachian system is the oldest and consists of ancient cratered terrain. The Hesperian overlies the Noachian and consists principally of ridged plains materials. The Amazonian system has the youngest relative age and is represented mainly by smooth plains.
-
(1987)
U.S. Geol. Surv. Misc. Inv. Series Map I-180Z-B
-
-
Greeley, R.1
Guest, J.E.2
-
27
-
-
0004262991
-
-
D. H. Scott and K. L. Tanaka, U.S. Geol. Surv Misc. Inv. Series Map I-1802-A (1986); R. Greeley and J. E. Guest, U.S. Geol. Surv. Misc. Inv. Series Map I-180Z-B (1987); K. L. Tanaka and D. H. Scott, U.S. Geol. Surv. Misc. Inv. Series Map I-1802-C (1987). Mars is divided into three primary stratigraphic units. The Noachian system is the oldest and consists of ancient cratered terrain. The Hesperian overlies the Noachian and consists principally of ridged plains materials. The Amazonian system has the youngest relative age and is represented mainly by smooth plains.
-
(1987)
U.S. Geol. Surv. Misc. Inv. Series Map I-1802-C
-
-
Tanaka, K.L.1
Scott, D.H.2
-
30
-
-
0004516637
-
-
R. P. Sharp et al., J. Geophys. Res. 76, 331 (1971). R. P. Sharp, ibid. 78, 4073 (1973).
-
(1971)
J. Geophys. Res.
, vol.76
, pp. 331
-
-
Sharp, R.P.1
-
31
-
-
0000428605
-
-
R. P. Sharp et al., J. Geophys. Res. 76, 331 (1971). R. P. Sharp, ibid. 78, 4073 (1973).
-
(1973)
J. Geophys. Res.
, vol.78
, pp. 4073
-
-
Sharp, R.P.1
-
33
-
-
0002266237
-
-
H. H. Kieffer, B. M. Jakosky, C. W. Snyder, M. S. Matthews, Eds. Univ. of Arizona Press, Tucson
-
W. B. Banerdt, M. P. Golombek, K. L. Tanaka, in Mars, H. H. Kieffer, B. M. Jakosky, C. W. Snyder, M. S. Matthews, Eds. (Univ. of Arizona Press, Tucson, 1992), pp. 249-297; P. B. Esposito et al., ibid., pp. 209-248.
-
(1992)
Mars
, pp. 249-297
-
-
Banerdt, W.B.1
Golombek, M.P.2
Tanaka, K.L.3
-
34
-
-
0002003378
-
-
W. B. Banerdt, M. P. Golombek, K. L. Tanaka, in Mars, H. H. Kieffer, B. M. Jakosky, C. W. Snyder, M. S. Matthews, Eds. (Univ. of Arizona Press, Tucson, 1992), pp. 249-297; P. B. Esposito et al., ibid., pp. 209-248.
-
Mars
, pp. 209-248
-
-
Esposito, P.B.1
-
36
-
-
11544285187
-
-
R. A. Schultz and K. L. Tanaka, J. Geophys. Res. 99, 8371 (1994); J. Dohm and K. Tanaka, Planet. Space Sci. 47, 411 (1999).
-
(1999)
Planet. Space Sci.
, vol.47
, pp. 411
-
-
Dohm, J.1
Tanaka, K.2
-
37
-
-
0000436047
-
-
W. B. Banerdt, R. J. Phillips, N. H. Sleep, R. S. Saunders, J. Geophys. Res. 87, 9723 (1982).
-
(1982)
J. Geophys. Res.
, vol.87
, pp. 9723
-
-
Banerdt, W.B.1
Phillips, R.J.2
Sleep, N.H.3
Saunders, R.S.4
-
41
-
-
0028667033
-
-
M. T. Zuber, D. E. Smith, G. A. Neumann, F. G. Lemoine, Science 266, 1839 (1994).
-
(1994)
Science
, vol.266
, pp. 1839
-
-
Zuber, M.T.1
Smith, D.E.2
Neumann, G.A.3
Lemoine, F.G.4
-
42
-
-
0001130464
-
-
R. E. Lingenfelter and G. Schubert, Moon 7, 172 (1973); D. U. Wise, M. P. Golombek, G. E. McGill, Icarus 35, 456 (1979); J. Geophys. Res. 84, 7934 (1979).
-
(1973)
Moon
, vol.7
, pp. 172
-
-
Lingenfelter, R.E.1
Schubert, G.2
-
43
-
-
0000939689
-
-
R. E. Lingenfelter and G. Schubert, Moon 7, 172 (1973); D. U. Wise, M. P. Golombek, G. E. McGill, Icarus 35, 456 (1979); J. Geophys. Res. 84, 7934 (1979).
-
(1979)
Icarus
, vol.35
, pp. 456
-
-
Wise, D.U.1
Golombek, M.P.2
McGill, G.E.3
-
44
-
-
0001130464
-
-
R. E. Lingenfelter and G. Schubert, Moon 7, 172 (1973); D. U. Wise, M. P. Golombek, G. E. McGill, Icarus 35, 456 (1979); J. Geophys. Res. 84, 7934 (1979).
-
(1979)
J. Geophys. Res.
, vol.84
, pp. 7934
-
-
-
51
-
-
0344707702
-
-
Slopes were computed in the direction of maximum gradient on 100-km baselines from a global 0.25° grid, smoothed to 100 km. The histogram uses bins of width 0.035°
-
Slopes were computed in the direction of maximum gradient on 100-km baselines from a global 0.25° grid, smoothed to 100 km. The histogram uses bins of width 0.035°.
-
-
-
-
53
-
-
0344275764
-
-
in preparation; M. T. Zuber et al., in press
-
D. E. Smith, W. L. Sjogren, G. Balmino, G. L. Tyler, in preparation; M. T. Zuber et al., Eos Trans. Am. Geophys. Union, in press.
-
Eos Trans. Am. Geophys. Union
-
-
Smith, D.E.1
Sjogren, W.L.2
Balmino, G.3
Tyler, G.L.4
-
55
-
-
0029728852
-
-
H. Harder and U. R. Christensen, Nature 380, 507 (1996); H. Harder, J. Geophys. Res. 103, 16775 (1998); D. Breuer, D. A. Yuen, T. Spohn, S. Zhang, Geophys. Res. Lett. 25, 229 (1998).
-
(1996)
Nature
, vol.380
, pp. 507
-
-
Harder, H.1
Christensen, U.R.2
-
56
-
-
0032566146
-
-
H. Harder and U. R. Christensen, Nature 380, 507 (1996); H. Harder, J. Geophys. Res. 103, 16775 (1998); D. Breuer, D. A. Yuen, T. Spohn, S. Zhang, Geophys. Res. Lett. 25, 229 (1998).
-
(1998)
J. Geophys. Res.
, vol.103
, pp. 16775
-
-
Harder, H.1
-
57
-
-
0032004740
-
-
H. Harder and U. R. Christensen, Nature 380, 507 (1996); H. Harder, J. Geophys. Res. 103, 16775 (1998); D. Breuer, D. A. Yuen, T. Spohn, S. Zhang, Geophys. Res. Lett. 25, 229 (1998).
-
(1998)
Geophys. Res. Lett.
, vol.25
, pp. 229
-
-
Breuer, D.1
Yuen, D.A.2
Spohn, T.3
Zhang, S.4
-
58
-
-
17744416393
-
-
M. H. Acuña et al., Science 284, 790 (1999); J. E. P. Connerney et al., ibid., p. 794.
-
(1999)
Science
, vol.284
, pp. 790
-
-
Acuña, M.H.1
-
59
-
-
17744416393
-
-
M. H. Acuña et al., Science 284, 790 (1999); J. E. P. Connerney et al., ibid., p. 794.
-
Science
, pp. 794
-
-
Connerney, J.E.P.1
-
60
-
-
0024923042
-
-
R. Wichman and P. Schultz, J. Geophys. Res. 94, 17333 (1989); J. Kargel and R. Strom, Geology 20, 3 (1992); J. Moore and K. Edgett, Geophys. Res. Lett. 20, 1599 (1993); K. Tanaka and G. Leonard, J. Geophys. Res. 100, 5407 (1995).
-
(1989)
J. Geophys. Res.
, vol.94
, pp. 17333
-
-
Wichman, R.1
Schultz, P.2
-
61
-
-
84874993282
-
-
R. Wichman and P. Schultz, J. Geophys. Res. 94, 17333 (1989); J. Kargel and R. Strom, Geology 20, 3 (1992); J. Moore and K. Edgett, Geophys. Res. Lett. 20, 1599 (1993); K. Tanaka and G. Leonard, J. Geophys. Res. 100, 5407 (1995).
-
(1992)
Geology
, vol.20
, pp. 3
-
-
Kargel, J.1
Strom, R.2
-
62
-
-
0027799489
-
-
R. Wichman and P. Schultz, J. Geophys. Res. 94, 17333 (1989); J. Kargel and R. Strom, Geology 20, 3 (1992); J. Moore and K. Edgett, Geophys. Res. Lett. 20, 1599 (1993); K. Tanaka and G. Leonard, J. Geophys. Res. 100, 5407 (1995).
-
(1993)
Geophys. Res. Lett.
, vol.20
, pp. 1599
-
-
Moore, J.1
Edgett, K.2
-
63
-
-
0028885192
-
-
R. Wichman and P. Schultz, J. Geophys. Res. 94, 17333 (1989); J. Kargel and R. Strom, Geology 20, 3 (1992); J. Moore and K. Edgett, Geophys. Res. Lett. 20, 1599 (1993); K. Tanaka and G. Leonard, J. Geophys. Res. 100, 5407 (1995).
-
(1995)
J. Geophys. Res.
, vol.100
, pp. 5407
-
-
Tanaka, K.1
Leonard, G.2
-
66
-
-
0018728240
-
-
H. H. Kieffer, J. Geophys. Res. 84, 8263 (1979); D. A. Paige et al., ibid. 95, 1319 (1990).
-
(1979)
J. Geophys. Res.
, vol.84
, pp. 8263
-
-
Kieffer, H.H.1
-
67
-
-
0025247432
-
-
H. H. Kieffer, J. Geophys. Res. 84, 8263 (1979); D. A. Paige et al., ibid. 95, 1319 (1990).
-
(1990)
J. Geophys. Res.
, vol.95
, pp. 1319
-
-
Paige, D.A.1
-
71
-
-
0032509436
-
-
M. T. Zuber et al., Science 282, 2053 (1998).
-
(1998)
Science
, vol.282
, pp. 2053
-
-
Zuber, M.T.1
-
72
-
-
0344707694
-
-
in preparation
-
C. L. Johnson et al., in preparation.
-
-
-
Johnson, C.L.1
-
73
-
-
0344275761
-
-
note
-
3 (49), The MOLA topographic surface is about two orders of magnitude more precise than that from the images, and in addition, individual elevations from MOLA are geodetically referenced and permit the topography of the cap to be related accurately to the surroundings. The stereo-based estimate did not consider the effect of flexure of the basal surface, which is responsible for the bulk of the uncertainty in our estimate of the south polar volume, and which may contribute as much as half of the volume. Error due to the presence of the Prometheus Rupes under part of the layered terrain is small in comparison to the uncertainty associated with flexure.
-
-
-
-
75
-
-
0003106773
-
-
Camp Allen, TX, 18 to 22 October 1998; S. Clifford, D. Fisher, J. Rice, Eds. Lunar Planetary Institute, Houston
-
M. T. Zuber, L. Lim, H. J. Zwatly, in First International Conference on Mars Polar Science and Exploration, Camp Allen, TX, 18 to 22 October 1998; S. Clifford, D. Fisher, J. Rice, Eds. (Lunar Planetary Institute, Houston, 1998), pp. 45-46; W. B. Durham, ibid., pp. 8-9.
-
(1998)
First International Conference on Mars Polar Science and Exploration
, pp. 45-46
-
-
Zuber, M.T.1
Lim, L.2
Zwatly, H.J.3
-
76
-
-
0345138265
-
-
M. T. Zuber, L. Lim, H. J. Zwatly, in First International Conference on Mars Polar Science and Exploration, Camp Allen, TX, 18 to 22 October 1998; S. Clifford, D. Fisher, J. Rice, Eds. (Lunar Planetary Institute, Houston, 1998), pp. 45-46; W. B. Durham, ibid., pp. 8-9.
-
First International Conference on Mars Polar Science and Exploration
, pp. 8-9
-
-
Durham, W.B.1
-
77
-
-
0030438497
-
-
Oxford Univ. Press, New York
-
M. H. Carr, Water on Mars (Oxford Univ. Press, New York, 1996).
-
(1996)
Water on Mars
-
-
Carr, M.H.1
-
79
-
-
17144466084
-
-
S. M. Clifford, J. Geophys. Res. 92, 9135 (1987); ibid. 98, 10973 (1993).
-
(1993)
J. Geophys. Res.
, vol.98
, pp. 10973
-
-
-
80
-
-
45249130651
-
-
T. J. Parker et al., Icarus 82, 111 (1989); T. J. Parker, D. S. Gorsline, R. S. Saunders, D. C. Pieri, D. M. Schneeberger, J. Geophys. Res. 98, 11061 (1993); V. R. Baker et al., Nature 352, 589 (1991).
-
(1989)
Icarus
, vol.82
, pp. 111
-
-
Parker, T.J.1
-
81
-
-
0027868410
-
-
T. J. Parker et al., Icarus 82, 111 (1989); T. J. Parker, D. S. Gorsline, R. S. Saunders, D. C. Pieri, D. M. Schneeberger, J. Geophys. Res. 98, 11061 (1993); V. R. Baker et al., Nature 352, 589 (1991).
-
(1993)
J. Geophys. Res.
, vol.98
, pp. 11061
-
-
Parker, T.J.1
Gorsline, D.S.2
Saunders, R.S.3
Pieri, D.C.4
Schneeberger, D.M.5
-
82
-
-
0026289716
-
-
T. J. Parker et al., Icarus 82, 111 (1989); T. J. Parker, D. S. Gorsline, R. S. Saunders, D. C. Pieri, D. M. Schneeberger, J. Geophys. Res. 98, 11061 (1993); V. R. Baker et al., Nature 352, 589 (1991).
-
(1991)
Nature
, vol.352
, pp. 589
-
-
Baker, V.R.1
-
85
-
-
0345569843
-
-
in (24)
-
B. K. Luchitta et al., in (24), pp. 453-492.
-
-
-
Luchitta, B.K.1
-
87
-
-
0006808090
-
Precision orbit determination for Mars Global Surveyor during Hiatus and SPO
-
Breckenridge, CO, 7 to 10 February 1999; American Astronautics Society Publications Office, San Diego
-
F. G. Lemoine et al., "Precision orbit determination for Mars Global Surveyor during Hiatus and SPO," AIAA Space Flight Mechanics Meeting, Breckenridge, CO, 7 to 10 February 1999; (American Astronautics Society Publications Office, San Diego, 1999).
-
(1999)
AIAA Space Flight Mechanics Meeting
-
-
Lemoine, F.G.1
-
89
-
-
0345569840
-
-
The mean radius was obtained from a 36th degree and order spherical harmonic expansion of the binned data. The uncertainty is based on the rms fit of 554 m of the model to the data. The north and south polar radii are also determined from the harmonic model
-
The mean radius was obtained from a 36th degree and order spherical harmonic expansion of the binned data. The uncertainty is based on the rms fit of 554 m of the model to the data. The north and south polar radii are also determined from the harmonic model.
-
-
-
-
90
-
-
0344275756
-
-
The mean equatorial radius was derived from the harmonic model (65) based on a 1° sampling of an equatorial profile. This value is 200 m larger than was estimated from earlier data (5) but is within the error estimate of the earlier value. The uncertainty corresponds to the standard error of the mean of the 360 equatorial samples
-
The mean equatorial radius was derived from the harmonic model (65) based on a 1° sampling of an equatorial profile. This value is 200 m larger than was estimated from earlier data (5) but is within the error estimate of the earlier value. The uncertainty corresponds to the standard error of the mean of the 360 equatorial samples.
-
-
-
-
91
-
-
0344275755
-
-
note
-
We acknowledge the MOLA instrument team and the MGS spacecraft and operation teams at the Jet Propulsion Laboratory and Lockheed-Martin Astronautics for providing the engineering foundation that enabled this analysis. We also thank G. Elman, P. Jester, and J. Schott for assistance in altimetry processing, D. Rowlands and S. Fricke for help with orbit determination, S. Zhong for assistance with the Hellas relaxation calculation, and G. McGill for a constructive review. The MOLA investigation is supported by the NASA Mars Global Surveyor Project.
-
-
-
|