-
1
-
-
0027101624
-
-
M. T. Zuber et al., J. Geophys. Res. 97, 7781 (1992). The MOLA instrument was designed and built by the Laser Remote Sensing Branch of NASA/GSFC. The laser operated at a wavelength of 1.064 μm, emitting 8-nsec-long pulses with an energy of ∼40 mJ at the diode operating temperature during operation in the MGS 35-hour elliptical orbit.
-
(1992)
J. Geophys. Res.
, vol.97
, pp. 7781
-
-
Zuber, M.T.1
-
2
-
-
7144225230
-
-
note
-
MOLA measures the round-trip time of flight of individual laser pulses between the MGS spacecraft and the martian surface. By interpolating the spacecraft orbital trajectory to the time of the laser measurement and correcting for the index of refraction of the martian atmosphere, the one-way light time between the spacecraft and the surface is obtained. Subtraction of the range from the MGS orbit, allowing for off-nadir pointing, yields measurements of martian radius in a center of mass reference frame.
-
-
-
-
3
-
-
7144220191
-
-
note
-
Surface reflectivity or albedo at the laser wavelength was determined from the ratio of received to transmitted laser energy. Outgoing pulse energy is sampled with an optical fiber that measures ∼95% of the outgoing pulse cross section. The received energy is derived from the area under the curve representing the best estimate of the returned pulse shape. The accuracy of the reflectivity measurement after calibration is ∼5%.
-
-
-
-
4
-
-
7144247841
-
-
note
-
MOLA's return pulse width provides a measure of the footprint-scale slope or rms roughness of the terrain. The instrument detection electronics contain a bank of four parallel bandpass filters with widths of 20, 60, 180, and 540 nsec that correspond to foot-print-scale surface slopes of 1°, 3°, 10°, and 27°. The return pulse triggers the filter that most closely matches the width of the return. Measurement refinement is made using the difference in the times at which the leading and trailing edges of the returned pulse cross the detection threshold. The time difference is translated into an equivalent pulse spread.
-
-
-
-
5
-
-
7144266574
-
-
note
-
Ranges were obtained during periapse passes while the MGS spacecraft was at altitudes of ≤786 km bove the martian surface. The maximum range was limited by system hardware. Despite non-optimal operating conditions the instrument obtained valid range measurements for ∼99% of the output pulses. The laser beam divergence of 400 μrad resulted in a surface spot size of 70 to 300 m.
-
-
-
-
6
-
-
7144267512
-
-
note
-
The estimated radial accuracy of the present topography data from MOLA is 30 to 40 m and is dominated by long-wavelength orbital uncertainties of MGS. The precision of the MOLA measurement approaches 30 cm on smooth level surfaces and increases to ∼20 m on 30° slopes. The accuracy of the spot location in latitude and longitude is limited by the knowledge of the spacecraft pointing at about 3 mrad (500 to 2000 m on the surface, depending on spacecraft altitude), and spacecraft position uncertainties of several hundred meters.
-
-
-
-
7
-
-
0000917143
-
-
G. S. Downs et al., J. Geophys. Res. 87, 9747 (1982); A. J. Kliore et al., Icarus 17, 484 (1972); G. F. Lindal et al., J. Geophys. Res. 84, 8443 (1979); C. W. Hord, Icarus 17, 443 (1972); B. Conrath et al., J. Geophys. Res. 78, 4267 (1973).
-
(1982)
J. Geophys. Res.
, vol.87
, pp. 9747
-
-
Downs, G.S.1
-
8
-
-
0000082458
-
-
G. S. Downs et al., J. Geophys. Res. 87, 9747 (1982); A. J. Kliore et al., Icarus 17, 484 (1972); G. F. Lindal et al., J. Geophys. Res. 84, 8443 (1979); C. W. Hord, Icarus 17, 443 (1972); B. Conrath et al., J. Geophys. Res. 78, 4267 (1973).
-
(1972)
Icarus
, vol.17
, pp. 484
-
-
Kliore, A.J.1
-
9
-
-
0000765974
-
-
G. S. Downs et al., J. Geophys. Res. 87, 9747 (1982); A. J. Kliore et al., Icarus 17, 484 (1972); G. F. Lindal et al., J. Geophys. Res. 84, 8443 (1979); C. W. Hord, Icarus 17, 443 (1972); B. Conrath et al., J. Geophys. Res. 78, 4267 (1973).
-
(1979)
J. Geophys. Res.
, vol.84
, pp. 8443
-
-
Lindal, G.F.1
-
10
-
-
0006809188
-
-
G. S. Downs et al., J. Geophys. Res. 87, 9747 (1982); A. J. Kliore et al., Icarus 17, 484 (1972); G. F. Lindal et al., J. Geophys. Res. 84, 8443 (1979); C. W. Hord, Icarus 17, 443 (1972); B. Conrath et al., J. Geophys. Res. 78, 4267 (1973).
-
(1972)
Icarus
, vol.17
, pp. 443
-
-
Hord, C.W.1
-
11
-
-
0000788602
-
-
G. S. Downs et al., J. Geophys. Res. 87, 9747 (1982); A. J. Kliore et al., Icarus 17, 484 (1972); G. F. Lindal et al., J. Geophys. Res. 84, 8443 (1979); C. W. Hord, Icarus 17, 443 (1972); B. Conrath et al., J. Geophys. Res. 78, 4267 (1973).
-
(1973)
J. Geophys. Res.
, vol.78
, pp. 4267
-
-
Conrath, B.1
-
14
-
-
0002141484
-
-
H. H. Kieffer, B. M. Jakosky, C. W. Snyder, M. S. Matthews, Eds. Univ. of Arizona Press, Tucson
-
P. B. Esposito et al., in Mars, H. H. Kieffer, B. M. Jakosky, C. W. Snyder, M. S. Matthews, Eds. (Univ. of Arizona Press, Tucson, 1992), p. 209.
-
(1992)
Mars
, pp. 209
-
-
Esposito, P.B.1
-
15
-
-
3943068941
-
-
Topography is defined as the planetary radius minus the radius of the geoid, which is a gravitational equipotential surface. In our analysis we used the geoid from the GMM-1 gravitational field model of Mars [D. E. Smith et al., J. Geophys. Res. 98, 20,871 (1993)], recently recalculated to incorporate up to date IAU geophysical and coordinate system parameters. We define zero elevation using the Mars geoid constrained by the equatorial radius measured by MOLA. The mean equatorial radius of 3396.0±0.3 km represents the average of all elevation measurements within 0.1° latitude of the equator. This is 1.0 km less than the IAU 1991 value and ∼2 km larger than previously used in mapping the planet (9). The largest contribution to the uncertainty is the sparse data distribution, and the largest source of systematic error is the MGS orbit.
-
(1993)
J. Geophys. Res.
, vol.98
, pp. 20
-
-
Smith, D.E.1
-
18
-
-
0001130464
-
-
R. E. Lingenfelter and G. Schubert, Moon 7, 172 (1973); D. U. Wise et al., Icarus 35, 456 (1979); D. E. Wilhelms and S. W. Squyres, Nature 309, 138 (1984); H. V. Frey and R. A. Schultz, Geophys. Res. Lett. 15, 229 (1988).
-
(1973)
Moon
, vol.7
, pp. 172
-
-
Lingenfelter, R.E.1
Schubert, G.2
-
19
-
-
0000939689
-
-
R. E. Lingenfelter and G. Schubert, Moon 7, 172 (1973); D. U. Wise et al., Icarus 35, 456 (1979); D. E. Wilhelms and S. W. Squyres, Nature 309, 138 (1984); H. V. Frey and R. A. Schultz, Geophys. Res. Lett. 15, 229 (1988).
-
(1979)
Icarus
, vol.35
, pp. 456
-
-
Wise, D.U.1
-
20
-
-
0001189412
-
-
R. E. Lingenfelter and G. Schubert, Moon 7, 172 (1973); D. U. Wise et al., Icarus 35, 456 (1979); D. E. Wilhelms and S. W. Squyres, Nature 309, 138 (1984); H. V. Frey and R. A. Schultz, Geophys. Res. Lett. 15, 229 (1988).
-
(1984)
Nature
, vol.309
, pp. 138
-
-
Wilhelms, D.E.1
Squyres, S.W.2
-
21
-
-
0023774859
-
-
R. E. Lingenfelter and G. Schubert, Moon 7, 172 (1973); D. U. Wise et al., Icarus 35, 456 (1979); D. E. Wilhelms and S. W. Squyres, Nature 309, 138 (1984); H. V. Frey and R. A. Schultz, Geophys. Res. Lett. 15, 229 (1988).
-
(1988)
Geophys. Res. Lett.
, vol.15
, pp. 229
-
-
Frey, H.V.1
Schultz, R.A.2
-
22
-
-
0026289716
-
-
V. R. Baker et al., Nature 352, 589 (1991).
-
(1991)
Nature
, vol.352
, pp. 589
-
-
Baker, V.R.1
-
23
-
-
0001038604
-
-
M. H. Carr et al., J. Geophys. Res. 78, 4049 (1973); R. Greeley, Science 236, 1653 (1987); V. R. Baker et al., in Mars, H. H. Kieffer, B. M. Jakosky, C. W. Snyder, M. S. Matthews, Eds. (Univ. of Arizona Press, Tucson, 1992), p. 493.
-
(1973)
J. Geophys. Res.
, vol.78
, pp. 4049
-
-
Carr, M.H.1
-
24
-
-
0023525109
-
-
M. H. Carr et al., J. Geophys. Res. 78, 4049 (1973); R. Greeley, Science 236, 1653 (1987); V. R. Baker et al., in Mars, H. H. Kieffer, B. M. Jakosky, C. W. Snyder, M. S. Matthews, Eds. (Univ. of Arizona Press, Tucson, 1992), p. 493.
-
(1987)
Science
, vol.236
, pp. 1653
-
-
Greeley, R.1
-
25
-
-
0346727360
-
-
H. H. Kieffer, B. M. Jakosky, C. W. Snyder, M. S. Matthews, Eds. Univ. of Arizona Press, Tucson
-
M. H. Carr et al., J. Geophys. Res. 78, 4049 (1973); R. Greeley, Science 236, 1653 (1987); V. R. Baker et al., in Mars, H. H. Kieffer, B. M. Jakosky, C. W. Snyder, M. S. Matthews, Eds. (Univ. of Arizona Press, Tucson, 1992), p. 493.
-
(1992)
Mars
, pp. 493
-
-
Baker, V.R.1
-
26
-
-
0030707833
-
-
W. M. Folkner et al., Science 278, 1749 (1997).
-
(1997)
Science
, vol.278
, pp. 1749
-
-
Folkner, W.M.1
-
27
-
-
0008720868
-
-
H. H. Kieffer, B. M. Jakosky, C. W. Snyder, M. S. Matthews, Eds. Univ. of Arizona Press, Tucson
-
P. Thomas et al., in Mars, H. H. Kieffer, B. M. Jakosky, C. W. Snyder, M. S. Matthews, Eds. (Univ. of Arizona Press, Tucson, 1992), p. 767; M. C. Malin, Geophys. Res. Lett. 13, 444 (1986). D. A. Paige et al., J. Geophys. Res. 99, 25,595 (1994).
-
(1992)
Mars
, pp. 767
-
-
Thomas, P.1
-
28
-
-
84989508586
-
-
P. Thomas et al., in Mars, H. H. Kieffer, B. M. Jakosky, C. W. Snyder, M. S. Matthews, Eds. (Univ. of Arizona Press, Tucson, 1992), p. 767; M. C. Malin, Geophys. Res. Lett. 13, 444 (1986). D. A. Paige et al., J. Geophys. Res. 99, 25,595 (1994).
-
(1986)
Geophys. Res. Lett.
, vol.13
, pp. 444
-
-
Malin, M.C.1
-
29
-
-
0040697234
-
-
P. Thomas et al., in Mars, H. H. Kieffer, B. M. Jakosky, C. W. Snyder, M. S. Matthews, Eds. (Univ. of Arizona Press, Tucson, 1992), p. 767; M. C. Malin, Geophys. Res. Lett. 13, 444 (1986). D. A. Paige et al., J. Geophys. Res. 99, 25,595 (1994).
-
(1994)
J. Geophys. Res.
, vol.99
, pp. 25
-
-
Paige, D.A.1
-
30
-
-
0001458973
-
-
A. D. Howard et al., Icarus 50, 245 (1982); K. R. Blasius et al., ibid., p. 140.
-
(1982)
Icarus
, vol.50
, pp. 245
-
-
Howard, A.D.1
-
31
-
-
0001458973
-
-
A. D. Howard et al., Icarus 50, 245 (1982); K. R. Blasius et al., ibid., p. 140.
-
Icarus
, pp. 140
-
-
Blasius, K.R.1
-
33
-
-
0001207782
-
-
M. H. Carr et al., J. Geophys. Res. 82, 4055 (1977); D. J. Jankowski and S. W. Squyres, Icarus 100, 26 (1992).
-
(1977)
J. Geophys. Res.
, vol.82
, pp. 4055
-
-
Carr, M.H.1
-
34
-
-
0002653074
-
-
M. H. Carr et al., J. Geophys. Res. 82, 4055 (1977); D. J. Jankowski and S. W. Squyres, Icarus 100, 26 (1992).
-
(1992)
Icarus
, vol.100
, pp. 26
-
-
Jankowski, D.J.1
Squyres, S.W.2
-
35
-
-
0000863993
-
-
H. H. Kieffer, B. M. Jakosky, C. W. Snyder, M. S. Matthews, Eds. Univ. of Arizona Press, Tucson
-
P. J. Mouginis-Mark et al., in Mars, H. H. Kieffer, B. M. Jakosky, C. W. Snyder, M. S. Matthews, Eds. (Univ. of Arizona Press, Tucson, 1992), p. 424; W. B. Banerdt et al., ibid., p. 249; G. Schubert et al., ibid., p. 147.
-
(1992)
Mars
, pp. 424
-
-
Mouginis-Mark, P.J.1
-
36
-
-
7144239216
-
-
P. J. Mouginis-Mark et al., in Mars, H. H. Kieffer, B. M. Jakosky, C. W. Snyder, M. S. Matthews, Eds. (Univ. of Arizona Press, Tucson, 1992), p. 424; W. B. Banerdt et al., ibid., p. 249; G. Schubert et al., ibid., p. 147.
-
Mars
, pp. 249
-
-
-
37
-
-
0004192303
-
-
P. J. Mouginis-Mark et al., in Mars, H. H. Kieffer, B. M. Jakosky, C. W. Snyder, M. S. Matthews, Eds. (Univ. of Arizona Press, Tucson, 1992), p. 424; W. B. Banerdt et al., ibid., p. 249; G. Schubert et al., ibid., p. 147.
-
Mars
, pp. 147
-
-
Schubert, G.1
-
41
-
-
0000697634
-
-
H. H. Kieffer, B. M. Jakosky, C. W. Snyder, M. S. Matthews, Eds. Univ. of Arizona Press, Tucson
-
K. L. Tanaka et al., in Mars, H. H. Kieffer, B. M. Jakosky, C. W. Snyder, M. S. Matthews, Eds. (Univ. of Arizona Press, Tucson, 1992), p. 345.
-
(1992)
Mars
, pp. 345
-
-
Tanaka, K.L.1
-
44
-
-
0038246208
-
-
R. M. C. Lopes et al., Moon Planets 22, 221 (1980); P. W. Francis and G. Wadge, J. Geophys. Res. 88, 8333 (1983).
-
(1980)
Moon Planets
, vol.22
, pp. 221
-
-
Lopes, R.M.C.1
-
46
-
-
0030438497
-
-
Oxford Univ. Press, New York
-
M. H. Carr, Water on Mars (Oxford Univ. Press, New York, 1996).
-
(1996)
Water on Mars
-
-
Carr, M.H.1
-
48
-
-
0004180652
-
-
Dover, New York
-
1/6, where n is the Manning roughness coefficient, here square-root-gravity scaled from an assumed terrestrial value of 0.02. Hydraulic radius is obtained directly from MOLA data, assuming that the water level reached the paired-terraces and attempting to adjust the channel perimeter for post-flow mass wasting. A more difficult problem is estimation of slope. In principle, the apparent slope measured along the groundtrack can be projected into the downstream direction to yield true channel slope. The orbital track makes an angle of 50° with the downstream vector and true slope = apparent slope/ cos(50°). The presence of debris flows on the channel floor could locally modify this slope.
-
(1995)
Fluid Mechanics
-
-
Granger, R.A.1
-
49
-
-
7144224138
-
-
1/2, where h is channel depth and g is gravity] of 2.0. This value indicates supercritical flow
-
1/2, where h is channel depth and g is gravity] of 2.0. This value indicates supercritical flow.
-
-
-
-
50
-
-
0005689071
-
-
The filter of the Viking Orbiter Camera nearest to the MOLA wavelength is red [0.5 μm to 0.7 μm; M. H. Carr et al., Icarus 16, 17 (1972)]. We have adopted a scaling factor of 0.8 to convert those images to 1.064 μm to be consistent with spectroscopic observations of the average martian surface in visible and infrared wavelengths [L. A. Soderblom, in Mars, H. H. Kieffer, B. M. Jakosky, C. W. Snyder, M. S. Matthews, Eds. (Univ. of Arizona Press, Tucson, 1992), p. 557]. It is not possible to obtain unbiased values of opacity using the above method, because the Viking images are B not themselves corrected for the relevant atmospheric opacity. We used only Viking images that exhibited B little or no obscuration. Such opacities in the Viking images may either darken or brighten them, unlike the effect in MOLA reflectivities, which is pure extinction. We estimated that average Viking images were darkened with an opacity of 0.4 and added this to the MOLA opacities.
-
(1972)
Icarus
, vol.16
, pp. 17
-
-
Carr, M.H.1
-
51
-
-
0005689071
-
-
H. H. Kieffer, B. M. Jakosky, C. W. Snyder, M. S. Matthews, Eds. Univ. of Arizona Press, Tucson
-
The filter of the Viking Orbiter Camera nearest to the MOLA wavelength is red [0.5 μm to 0.7 μm; M. H. Carr et al., Icarus 16, 17 (1972)]. We have adopted a scaling factor of 0.8 to convert those images to 1.064 μm to be consistent with spectroscopic observations of the average martian surface in visible and infrared wavelengths [L. A. Soderblom, in Mars, H. H. Kieffer, B. M. Jakosky, C. W. Snyder, M. S. Matthews, Eds. (Univ. of Arizona Press, Tucson, 1992), p. 557]. It is not possible to obtain unbiased values of opacity using the above method, because the Viking images are B not themselves corrected for the relevant atmospheric opacity. We used only Viking images that exhibited B little or no obscuration. Such opacities in the Viking images may either darken or brighten them, unlike the effect in MOLA reflectivities, which is pure extinction. We estimated that average Viking images were darkened with an opacity of 0.4 and added this to the MOLA opacities.
-
(1992)
Mars
, pp. 557
-
-
Soderblom, L.A.1
-
52
-
-
0006772880
-
-
M. C. Malin et al., Science 279, 1681 (1998).
-
(1998)
Science
, vol.279
, pp. 1681
-
-
Malin, M.C.1
-
53
-
-
7144224137
-
-
note
-
We thank MOLA Instrument Manager R. Follas and the rest of the instrument team, and G. Cunningham, B. McAnally, and the MGS spacecraft and operation teams. We also acknowledge helpful reviews from M. Carr and an anonymous reviewer, and contributions from J. Abshire and J. Smith in instrument calibration and performance assessment, G. Neumann, G. Elman, P. Jester, and J. Schott in altimetry processing, F. Lemoine, D. Rowlands, and S. Fricke in orbit determination, and O. Aharonson, D. Brown, J. Frawley, P. Haggerty, S. Hauk, A. Ivanov, P. McGovern, C. Johnson, S. Pratt, and N. Siebert in analysis. The MOLA investigation is supported by the NASA Mars Global Surveyor Project.
-
-
-
|