-
1
-
-
0032373007
-
-
T. Matsumura, S. Nakamura, T. Goto, H. Amitsuka, K. Matsuhira, T. Sakakibara and T. Suzuki: J. Phys. Soc. Jpn. 67 (1998) 612.
-
(1998)
J. Phys. Soc. Jpn.
, vol.67
, pp. 612
-
-
Matsumura, T.1
Nakamura, S.2
Goto, T.3
Amitsuka, H.4
Matsuhira, K.5
Sakakibara, T.6
Suzuki, T.7
-
2
-
-
0019049739
-
-
T. Fujita, M. Suzuki, T. Komatsubara, S. Kunii, T. Kasuya and T. Ohtsuka: J. Phys. Soc. Jpn. 35 (1980) 569.
-
(1980)
J. Phys. Soc. Jpn.
, vol.35
, pp. 569
-
-
Fujita, T.1
Suzuki, M.2
Komatsubara, T.3
Kunii, S.4
Kasuya, T.5
Ohtsuka, T.6
-
4
-
-
0021374774
-
-
J. M. Effantin, J. Rossat-Mignod, P. Burlet, H. Bartholin, S. Kunii and T. Kasuya: J. Magn. Magn. Mater. 47&48 (1985) 145.
-
(1985)
J. Magn. Magn. Mater.
, vol.47-48
, pp. 145
-
-
Effantin, J.M.1
Rossat-Mignod, J.2
Burlet, P.3
Bartholin, H.4
Kunii, S.5
Kasuya, T.6
-
8
-
-
0032070343
-
-
P. Link, A. Gukasov, J.-M. Mignot, T. Matsumura and T. Suzuki: Phys. Rev. Lett. 80 (1998) 4779.
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 4779
-
-
Link, P.1
Gukasov, A.2
Mignot, J.-M.3
Matsumura, T.4
Suzuki, T.5
-
9
-
-
0039976755
-
-
E. Clementyev, R. Köhler, M. Braden, J.-M. Mignot, C. Vettier, T. Matsumura and T. Suzuki: Physica B 230-232 (1997) 735.
-
(1997)
Physica B
, vol.230-232
, pp. 735
-
-
Clementyev, E.1
Köhler, R.2
Braden, M.3
Mignot, J.-M.4
Vettier, C.5
Matsumura, T.6
Suzuki, T.7
-
11
-
-
85034124221
-
-
note
-
In general higher-order terms of the crystal field are present in f-electron systems. However we can neglect this effect when the crystal field is weak compared with other energy scales.
-
-
-
-
12
-
-
85034142154
-
-
note
-
x)/{2J(J + 1)}. In general one can relate the classical multipoles to the quantum ones defined in ref. 5, taking care of the commutation relation and the scaling.
-
-
-
-
13
-
-
85034150124
-
-
note
-
3 phase is stabilized exclusively by the second-neighbor (intra-sublattice) interaction, if it is realized in TmTe. This fact eventually justifies our basic assumption on the decoupled sc sublattices.
-
-
-
-
14
-
-
85034150113
-
-
note
-
2 for the zero and the (111) fields, one has to include some realistic effect into the model, which is discussed in Appendix C.
-
-
-
-
15
-
-
0021517621
-
-
Y. Lassailly, C. Vettier, F. Holtzberg, A. Benoit and J. Flouquet: Solid State Comm. 52 (1984) 717.
-
(1984)
Solid State Comm.
, vol.52
, pp. 717
-
-
Lassailly, Y.1
Vettier, C.2
Holtzberg, F.3
Benoit, A.4
Flouquet, J.5
-
16
-
-
85034150117
-
-
note
-
2 is along (11̄0) as shown in §3.1.
-
-
-
-
17
-
-
85034132704
-
-
note
-
b)/2. In this case the magnetic interaction (3.1) depends only on φ and does not depends on δ. On the other hand the finite δ always leads to an energy loss due to the quadrupolar interaction and the crystal field. Thus δ should be zero independent of parameters.
-
-
-
-
19
-
-
85034137812
-
-
note
-
χ[001] hold in the normal phase due to the cubic symmetry.
-
-
-
-
21
-
-
4243840899
-
-
7 states are assumed. This level scheme is given by a large sixth-order term of crystal field as well as the fourth-order term. Thus the result cannot be compared with the present paper quantitatively.
-
(1999)
Physica B
, vol.259-261
, pp. 322
-
-
Shiina, R.1
Shiba, H.2
-
22
-
-
85034124118
-
-
to be published
-
T. Sakakibara: to be published.
-
-
-
Sakakibara, T.1
|