메뉴 건너뛰기




Volumn 32, Issue 9, 1999, Pages 270-274

Automatic learning using neural networks and adaptive regression

(2)  Pham, D T a   Peat, B J a  

a NONE

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; C (PROGRAMMING LANGUAGE); ERROR ANALYSIS; FEEDFORWARD NEURAL NETWORKS; MATHEMATICAL MODELS; MULTILAYER NEURAL NETWORKS; REGRESSION ANALYSIS; TENSORS;

EID: 0033348590     PISSN: 00202940     EISSN: None     Source Type: Journal    
DOI: 10.1177/002029409903200904     Document Type: Article
Times cited : (3)

References (51)
  • 5
    • 0000583248 scopus 로고
    • Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition
    • Fogleman Soulie F & Herault J (eds), Springer-Verlag
    • Bridle J S, Probabilistic Interpretation of Feedforward Classification Network Outputs, with Relationships to Statistical Pattern Recognition. In: Fogleman Soulie F & Herault J (eds), Neurocomputing: Algorithms, Architectures and Applications, Springer-Verlag, 1990, pp. 227-236.
    • (1990) Neurocomputing: Algorithms, Architectures and Applications , pp. 227-236
    • Bridle, J.S.1
  • 6
    • 0001699291 scopus 로고
    • Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters
    • Touretzky D S (ed), Morgan Kaufmann
    • Bridle J S, Training Stochastic Model Recognition Algorithms as Networks Can Lead to Maximum Mutual Information Estimation of Parameters. In: Touretzky D S (ed), Advances in Neural Information Processing Systems 2, Morgan Kaufmann, 1990, pp. 211-217.
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 211-217
    • Bridle, J.S.1
  • 7
    • 77953071922 scopus 로고
    • Learning symbolic rules using artificial neural networks
    • Univ of Massachusetts, June 27-29 1993, Morgan Kaufmann
    • Craven M W & Shavlik J W, (1993). Learning Symbolic Rules Using Artificial Neural Networks. In: Procs of 10th Intl Conf on Machine Learning, Univ of Massachusetts, June 27-29 1993, Morgan Kaufmann, pp. 73-80.
    • (1993) Procs of 10th Intl Conf on Machine Learning , pp. 73-80
    • Craven, M.W.1    Shavlik, J.W.2
  • 8
    • 0011847141 scopus 로고
    • Transforming neural-net output levels to probability distributions
    • Lippmann R P, Moody J E & Touretzky D S (eds), Morgan Kaufmann
    • Denker J S & Le Cun Y, Transforming Neural-Net Output Levels to Probability Distributions. In: Lippmann R P, Moody J E & Touretzky D S (eds), Advances in Neural Information Processing Systems 3, Morgan Kaufmann, 1991, pp. 853-859.
    • (1991) Advances in Neural Information Processing Systems , vol.3 , pp. 853-859
    • Denker, J.S.1    Le Cun, Y.2
  • 9
    • 0032202770 scopus 로고    scopus 로고
    • Prediction intervals for neural networks via nonlinear regression
    • De Veaux R D, Schumi J, Schweinsberg J & Ungar L H, Prediction intervals for neural networks via nonlinear regression, Technometrics, Vol.40, 1998, pp. 273-282.
    • (1998) Technometrics , vol.40 , pp. 273-282
    • De Veaux, R.D.1    Schumi, J.2    Schweinsberg, J.3    Ungar, L.H.4
  • 11
    • 0003000735 scopus 로고
    • Faster learning variations on back-propagation: An Empirical Study
    • Touretzty D, Hinton G & Sejnowski T (eds), Pittsburg, Morgan Kaufmann
    • Fahlman S E, Faster Learning Variations on Back-Propagation: An Empirical Study. In: Touretzty D, Hinton G & Sejnowski T (eds), Procs of 1988 Connectionist Models Summer School, Pittsburg, Morgan Kaufmann, 1989, pp. 38-51.
    • (1989) Procs of 1988 Connectionist Models Summer School , pp. 38-51
    • Fahlman, S.E.1
  • 12
    • 0000155950 scopus 로고
    • The cascade correlation learning architecture
    • Touretzky D S (ed), Morgan Kaufmann
    • Fahlman S E & Lebiere C, The Cascade Correlation Learning Architecture. In: Touretzky D S (ed), Advances in Neural Information Processing Systems 2, Morgan Kaufmann, 1990, pp. 524-532.
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 524-532
    • Fahlman, S.E.1    Lebiere, C.2
  • 13
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman J H, Multivariate Adaptive Regression Splines, Annals of Statistics, Vol. 19, No. 1, 1991, pp. 1-141.
    • (1991) Annals of Statistics , vol.19 , Issue.1 , pp. 1-141
    • Friedman, J.H.1
  • 14
    • 0013387929 scopus 로고
    • Adaptive spline networks
    • Lippmann R P, Moody J E & Touretzky D S (eds), Morgan Kaufmann
    • Friedman J H, Adaptive Spline Networks. In: Lippmann R P, Moody J E & Touretzky D S (eds), Advances in Neural Information Processing Systems 3, Morgan Kaufmann, 1991, pp. 675-683.
    • (1991) Advances in Neural Information Processing Systems , vol.3 , pp. 675-683
    • Friedman, J.H.1
  • 16
    • 0023962833 scopus 로고
    • Connectionist expert systems
    • Feb
    • Gallant S I, Connectionist Expert Systems, Communications of the ACM, Vol. 31, No. 2, Feb 1988, pp. 152-169.
    • (1988) Communications of the ACM , vol.31 , Issue.2 , pp. 152-169
    • Gallant, S.I.1
  • 18
    • 0039136604 scopus 로고    scopus 로고
    • Note on free lunches and cross-validation
    • Goutte C, Note on free lunches and cross-validation, Neural Computation, Vol. 9, 1997, pp. 1211-1215,
    • (1997) Neural Computation , vol.9 , pp. 1211-1215
    • Goutte, C.1
  • 20
    • 0001234705 scopus 로고
    • Second order derivatives for network pruning: Optimal brain surgeon
    • Hanson S J, Cowan J D & Giles C L (eds), Morgan Kaufmann
    • Hassibi B & Stork D G, Second Order Derivatives for Network Pruning: Optimal Brain Surgeon. In: Hanson S J, Cowan J D & Giles C L (eds), Advances in Neural Information Processing Systems 5, Morgan Kaufmann, 1993, pp. 164-171.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 164-171
    • Hassibi, B.1    Stork, D.G.2
  • 24
    • 84898947879 scopus 로고    scopus 로고
    • Practical confidence and prediction intervals
    • Mozer M C, Jordan M I & Petsche T (Eds). MIT Press
    • Heskes T, Practical confidence and prediction intervals. In: Mozer M C, Jordan M I & Petsche T (eds), Advances in Neural Information Processing Systems 9, MIT Press, 1997, pp. 176-182.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 176-182
    • Heskes, T.1
  • 26
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaption
    • Jacobs M C, Increased Rates of Convergence Through Learning Rate Adaption, Neural Networks, Vol. 1, 1988, pp. 295-307.
    • (1988) Neural Networks , vol.1 , pp. 295-307
    • Jacobs, M.C.1
  • 28
    • 0033114133 scopus 로고    scopus 로고
    • Discriminant component pruning: Regularization and interpretation of multilayer backpropagation networks
    • Koene R A & Takane Y, Discriminant Component Pruning: Regularization and Interpretation of Multilayer Backpropagation Networks, Neural Computation, Vol. 11, 1999, pp. 783-802.
    • (1999) Neural Computation , vol.11 , pp. 783-802
    • Koene, R.A.1    Takane, Y.2
  • 31
    • 0003486924 scopus 로고
    • Academic Press, with software
    • ++, Academic Press, 1993, with software.
    • (1993) ++
    • Masters, T.1
  • 32
    • 0000902690 scopus 로고
    • The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems
    • Moody J E, Hanson S J & Lippman R P (eds), Morgan Kaufmann
    • Moody J E, The Effective Number of Parameters: An Analysis of Generalization and Regularization in Nonlinear Learning Systems. In: Moody J E, Hanson S J & Lippman R P (eds), Advances in Neural Infor'n Processing Systems 4, Morgan Kaufmann, 1992, pp. 847-854.
    • (1992) Advances in Neural Infor'n Processing Systems , vol.4 , pp. 847-854
    • Moody, J.E.1
  • 33
    • 0032051395 scopus 로고    scopus 로고
    • Automated grading and defect detection: A review
    • Pham D T & Alcock R J, Automated Grading and Defect Detection: A Review, Forest Product Journals, Vol. 48, No. 4, 1998, pp. 34-42.
    • (1998) Forest Product Journals , vol.48 , Issue.4 , pp. 34-42
    • Pham, D.T.1    Alcock, R.J.2
  • 34
    • 0029375829 scopus 로고
    • Intelligent visual inspection of valve-stem seals
    • Pham D T, Jennings N R & Ross I, Intelligent Visual Inspection of Valve-Stem Seals, Control Engineering Practice, Vol. 3, No. 9, 1995, pp. 1237-1245.
    • (1995) Control Engineering Practice , vol.3 , Issue.9 , pp. 1237-1245
    • Pham, D.T.1    Jennings, N.R.2    Ross, I.3
  • 35
    • 0029369407 scopus 로고
    • Hybrid method for systems analysis
    • Sept Special Issue on Manufacturing Eng'g
    • Pham D T & Peat B J, Hybrid Method for Systems Analysis, IEE Procs: Science, Measurement & Technology, Vol. 142, No. 5, Sept 1995, Special Issue on Manufacturing Eng'g, pp. 350-361.
    • (1995) IEE Procs: Science, Measurement & Technology , vol.142 , Issue.5 , pp. 350-361
    • Pham, D.T.1    Peat, B.J.2
  • 37
    • 0027662338 scopus 로고
    • Pruning networks - A survey
    • Sept
    • Reed R, Pruning Networks - A Survey, IEEE Trans on Neural Networks, Vol. 4, No. 5, Sept 1993, pp. 740-747.
    • (1993) IEEE Trans on Neural Networks , vol.4 , Issue.5 , pp. 740-747
    • Reed, R.1
  • 38
    • 0001595997 scopus 로고
    • Neural network classifiers estimate Bayesian a posteriori probabilities
    • Richard M D & Lippmann R P, Neural Network Classifiers Estimate Bayesian a posteriori Probabilities, Neural Computation, Vol. 3, 1991, pp. 461-483.
    • (1991) Neural Computation , vol.3 , pp. 461-483
    • Richard, M.D.1    Lippmann, R.P.2
  • 39
    • 0002983776 scopus 로고
    • Statistical aspects of neural networks
    • Bamdorff-Nielsen, Jensen & Kendall (eds), Chapman & Hall
    • Ripley B D, Statistical Aspects of Neural Networks. In: Bamdorff-Nielsen, Jensen & Kendall (eds), Networks and Chaos -Statistical and Probabilistic Aspects, Chapman & Hall, 1993, pp. 40-123.
    • (1993) Networks and Chaos -Statistical and Probabilistic Aspects , pp. 40-123
    • Ripley, B.D.1
  • 41
    • 0025670892 scopus 로고
    • The multilayer perceptron as an approximation to a Bayes optimal discriminant function
    • Dec
    • Ruck D W, Rogers S K, Kabrisky M, Oxley M E & Suter B W, The Multilayer Perceptron as an Approximation to a Bayes Optimal Discriminant Function, IEEE Trans. on Neural Networks, Vol. 1, No. 4, Dec 1990, pp. 296-298.
    • (1990) IEEE Trans. on Neural Networks , vol.1 , Issue.4 , pp. 296-298
    • Ruck, D.W.1    Rogers, S.K.2    Kabrisky, M.3    Oxley, M.E.4    Suter, B.W.5
  • 42
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • Rumelhart D E, McCelland J L & PDP Research Group, MIT Press
    • Rumelhart D E, Hinton G E & Williams R J, Learning Internal Representations by Error Propagation. In: Rumelhart D E, McCelland J L & PDP Research Group, Parallel Distributed Processing, Vol. 1: Foundations, MIT Press, 1986, pp. 318-362.
    • (1986) Parallel Distributed Processing, Vol. 1: Foundations , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 45
    • 0001572432 scopus 로고    scopus 로고
    • A comparison of some error estimates for neural network models
    • Tibshirani R, A comparison of some error estimates for neural network models, Neural Computation, Vol. 8, 1996, pp. 152-163.
    • (1996) Neural Computation , vol.8 , pp. 152-163
    • Tibshirani, R.1
  • 46
    • 0028529307 scopus 로고
    • Knowledge-based artificial neural networks
    • Towell G G & Shavlik J W, Knowledge-Based Artificial Neural Networks, Artificial Intelligence, Vol. 70, 1994, pp. 119-165.
    • (1994) Artificial Intelligence , vol.70 , pp. 119-165
    • Towell, G.G.1    Shavlik, J.W.2
  • 47
    • 0025597157 scopus 로고
    • Neural network classification: A Bayesian interpretation
    • Dec
    • Wan E A, Neural Network Classification: A Bayesian Interpretation, IEEE Trans. on Neural Networks, Vol. 1, No. 4, Dec 1990, pp. 303-305.
    • (1990) IEEE Trans. on Neural Networks , vol.1 , Issue.4 , pp. 303-305
    • Wan, E.A.1
  • 51
    • 0037545145 scopus 로고    scopus 로고
    • No free lunch for cross-validation
    • Zhu H & Rohwer R, No free lunch for cross-validation, Neural Computation, Vol. 8, 1996, pp. 1421-1426.
    • (1996) Neural Computation , vol.8 , pp. 1421-1426
    • Zhu, H.1    Rohwer, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.