-
1
-
-
0026220510
-
Invariance and neural nets
-
Sept
-
Barnard E & Casasent D, Invariance and Neural Nets, IEEE Trans. on Neural Networks, Vol. 2, No. 5, Sept 1991, pp. 498-508.
-
(1991)
IEEE Trans. on Neural Networks
, vol.2
, Issue.5
, pp. 498-508
-
-
Barnard, E.1
Casasent, D.2
-
5
-
-
0000583248
-
Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition
-
Fogleman Soulie F & Herault J (eds), Springer-Verlag
-
Bridle J S, Probabilistic Interpretation of Feedforward Classification Network Outputs, with Relationships to Statistical Pattern Recognition. In: Fogleman Soulie F & Herault J (eds), Neurocomputing: Algorithms, Architectures and Applications, Springer-Verlag, 1990, pp. 227-236.
-
(1990)
Neurocomputing: Algorithms, Architectures and Applications
, pp. 227-236
-
-
Bridle, J.S.1
-
6
-
-
0001699291
-
Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters
-
Touretzky D S (ed), Morgan Kaufmann
-
Bridle J S, Training Stochastic Model Recognition Algorithms as Networks Can Lead to Maximum Mutual Information Estimation of Parameters. In: Touretzky D S (ed), Advances in Neural Information Processing Systems 2, Morgan Kaufmann, 1990, pp. 211-217.
-
(1990)
Advances in Neural Information Processing Systems
, vol.2
, pp. 211-217
-
-
Bridle, J.S.1
-
7
-
-
77953071922
-
Learning symbolic rules using artificial neural networks
-
Univ of Massachusetts, June 27-29 1993, Morgan Kaufmann
-
Craven M W & Shavlik J W, (1993). Learning Symbolic Rules Using Artificial Neural Networks. In: Procs of 10th Intl Conf on Machine Learning, Univ of Massachusetts, June 27-29 1993, Morgan Kaufmann, pp. 73-80.
-
(1993)
Procs of 10th Intl Conf on Machine Learning
, pp. 73-80
-
-
Craven, M.W.1
Shavlik, J.W.2
-
8
-
-
0011847141
-
Transforming neural-net output levels to probability distributions
-
Lippmann R P, Moody J E & Touretzky D S (eds), Morgan Kaufmann
-
Denker J S & Le Cun Y, Transforming Neural-Net Output Levels to Probability Distributions. In: Lippmann R P, Moody J E & Touretzky D S (eds), Advances in Neural Information Processing Systems 3, Morgan Kaufmann, 1991, pp. 853-859.
-
(1991)
Advances in Neural Information Processing Systems
, vol.3
, pp. 853-859
-
-
Denker, J.S.1
Le Cun, Y.2
-
9
-
-
0032202770
-
Prediction intervals for neural networks via nonlinear regression
-
De Veaux R D, Schumi J, Schweinsberg J & Ungar L H, Prediction intervals for neural networks via nonlinear regression, Technometrics, Vol.40, 1998, pp. 273-282.
-
(1998)
Technometrics
, vol.40
, pp. 273-282
-
-
De Veaux, R.D.1
Schumi, J.2
Schweinsberg, J.3
Ungar, L.H.4
-
11
-
-
0003000735
-
Faster learning variations on back-propagation: An Empirical Study
-
Touretzty D, Hinton G & Sejnowski T (eds), Pittsburg, Morgan Kaufmann
-
Fahlman S E, Faster Learning Variations on Back-Propagation: An Empirical Study. In: Touretzty D, Hinton G & Sejnowski T (eds), Procs of 1988 Connectionist Models Summer School, Pittsburg, Morgan Kaufmann, 1989, pp. 38-51.
-
(1989)
Procs of 1988 Connectionist Models Summer School
, pp. 38-51
-
-
Fahlman, S.E.1
-
12
-
-
0000155950
-
The cascade correlation learning architecture
-
Touretzky D S (ed), Morgan Kaufmann
-
Fahlman S E & Lebiere C, The Cascade Correlation Learning Architecture. In: Touretzky D S (ed), Advances in Neural Information Processing Systems 2, Morgan Kaufmann, 1990, pp. 524-532.
-
(1990)
Advances in Neural Information Processing Systems
, vol.2
, pp. 524-532
-
-
Fahlman, S.E.1
Lebiere, C.2
-
13
-
-
0002432565
-
Multivariate adaptive regression splines
-
Friedman J H, Multivariate Adaptive Regression Splines, Annals of Statistics, Vol. 19, No. 1, 1991, pp. 1-141.
-
(1991)
Annals of Statistics
, vol.19
, Issue.1
, pp. 1-141
-
-
Friedman, J.H.1
-
14
-
-
0013387929
-
Adaptive spline networks
-
Lippmann R P, Moody J E & Touretzky D S (eds), Morgan Kaufmann
-
Friedman J H, Adaptive Spline Networks. In: Lippmann R P, Moody J E & Touretzky D S (eds), Advances in Neural Information Processing Systems 3, Morgan Kaufmann, 1991, pp. 675-683.
-
(1991)
Advances in Neural Information Processing Systems
, vol.3
, pp. 675-683
-
-
Friedman, J.H.1
-
16
-
-
0023962833
-
Connectionist expert systems
-
Feb
-
Gallant S I, Connectionist Expert Systems, Communications of the ACM, Vol. 31, No. 2, Feb 1988, pp. 152-169.
-
(1988)
Communications of the ACM
, vol.31
, Issue.2
, pp. 152-169
-
-
Gallant, S.I.1
-
18
-
-
0039136604
-
Note on free lunches and cross-validation
-
Goutte C, Note on free lunches and cross-validation, Neural Computation, Vol. 9, 1997, pp. 1211-1215,
-
(1997)
Neural Computation
, vol.9
, pp. 1211-1215
-
-
Goutte, C.1
-
20
-
-
0001234705
-
Second order derivatives for network pruning: Optimal brain surgeon
-
Hanson S J, Cowan J D & Giles C L (eds), Morgan Kaufmann
-
Hassibi B & Stork D G, Second Order Derivatives for Network Pruning: Optimal Brain Surgeon. In: Hanson S J, Cowan J D & Giles C L (eds), Advances in Neural Information Processing Systems 5, Morgan Kaufmann, 1993, pp. 164-171.
-
(1993)
Advances in Neural Information Processing Systems
, vol.5
, pp. 164-171
-
-
Hassibi, B.1
Stork, D.G.2
-
22
-
-
84948746712
-
Flexible discriminant analysis by optimal scoring
-
Dec
-
Hastie T, Tibshirani R & Buja A, Flexible Discriminant Analysis by Optimal Scoring, Journal of American Statistical Assoc'n, Vol. 89, No. 428, Dec 1994, pp. 1255-1270.
-
(1994)
Journal of American Statistical Assoc'n
, vol.89
, Issue.428
, pp. 1255-1270
-
-
Hastie, T.1
Tibshirani, R.2
Buja, A.3
-
24
-
-
84898947879
-
Practical confidence and prediction intervals
-
Mozer M C, Jordan M I & Petsche T (Eds). MIT Press
-
Heskes T, Practical confidence and prediction intervals. In: Mozer M C, Jordan M I & Petsche T (eds), Advances in Neural Information Processing Systems 9, MIT Press, 1997, pp. 176-182.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 176-182
-
-
Heskes, T.1
-
26
-
-
0024137490
-
Increased rates of convergence through learning rate adaption
-
Jacobs M C, Increased Rates of Convergence Through Learning Rate Adaption, Neural Networks, Vol. 1, 1988, pp. 295-307.
-
(1988)
Neural Networks
, vol.1
, pp. 295-307
-
-
Jacobs, M.C.1
-
28
-
-
0033114133
-
Discriminant component pruning: Regularization and interpretation of multilayer backpropagation networks
-
Koene R A & Takane Y, Discriminant Component Pruning: Regularization and Interpretation of Multilayer Backpropagation Networks, Neural Computation, Vol. 11, 1999, pp. 783-802.
-
(1999)
Neural Computation
, vol.11
, pp. 783-802
-
-
Koene, R.A.1
Takane, Y.2
-
31
-
-
0003486924
-
-
Academic Press, with software
-
++, Academic Press, 1993, with software.
-
(1993)
++
-
-
Masters, T.1
-
32
-
-
0000902690
-
The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems
-
Moody J E, Hanson S J & Lippman R P (eds), Morgan Kaufmann
-
Moody J E, The Effective Number of Parameters: An Analysis of Generalization and Regularization in Nonlinear Learning Systems. In: Moody J E, Hanson S J & Lippman R P (eds), Advances in Neural Infor'n Processing Systems 4, Morgan Kaufmann, 1992, pp. 847-854.
-
(1992)
Advances in Neural Infor'n Processing Systems
, vol.4
, pp. 847-854
-
-
Moody, J.E.1
-
33
-
-
0032051395
-
Automated grading and defect detection: A review
-
Pham D T & Alcock R J, Automated Grading and Defect Detection: A Review, Forest Product Journals, Vol. 48, No. 4, 1998, pp. 34-42.
-
(1998)
Forest Product Journals
, vol.48
, Issue.4
, pp. 34-42
-
-
Pham, D.T.1
Alcock, R.J.2
-
34
-
-
0029375829
-
Intelligent visual inspection of valve-stem seals
-
Pham D T, Jennings N R & Ross I, Intelligent Visual Inspection of Valve-Stem Seals, Control Engineering Practice, Vol. 3, No. 9, 1995, pp. 1237-1245.
-
(1995)
Control Engineering Practice
, vol.3
, Issue.9
, pp. 1237-1245
-
-
Pham, D.T.1
Jennings, N.R.2
Ross, I.3
-
35
-
-
0029369407
-
Hybrid method for systems analysis
-
Sept Special Issue on Manufacturing Eng'g
-
Pham D T & Peat B J, Hybrid Method for Systems Analysis, IEE Procs: Science, Measurement & Technology, Vol. 142, No. 5, Sept 1995, Special Issue on Manufacturing Eng'g, pp. 350-361.
-
(1995)
IEE Procs: Science, Measurement & Technology
, vol.142
, Issue.5
, pp. 350-361
-
-
Pham, D.T.1
Peat, B.J.2
-
37
-
-
0027662338
-
Pruning networks - A survey
-
Sept
-
Reed R, Pruning Networks - A Survey, IEEE Trans on Neural Networks, Vol. 4, No. 5, Sept 1993, pp. 740-747.
-
(1993)
IEEE Trans on Neural Networks
, vol.4
, Issue.5
, pp. 740-747
-
-
Reed, R.1
-
38
-
-
0001595997
-
Neural network classifiers estimate Bayesian a posteriori probabilities
-
Richard M D & Lippmann R P, Neural Network Classifiers Estimate Bayesian a posteriori Probabilities, Neural Computation, Vol. 3, 1991, pp. 461-483.
-
(1991)
Neural Computation
, vol.3
, pp. 461-483
-
-
Richard, M.D.1
Lippmann, R.P.2
-
39
-
-
0002983776
-
Statistical aspects of neural networks
-
Bamdorff-Nielsen, Jensen & Kendall (eds), Chapman & Hall
-
Ripley B D, Statistical Aspects of Neural Networks. In: Bamdorff-Nielsen, Jensen & Kendall (eds), Networks and Chaos -Statistical and Probabilistic Aspects, Chapman & Hall, 1993, pp. 40-123.
-
(1993)
Networks and Chaos -Statistical and Probabilistic Aspects
, pp. 40-123
-
-
Ripley, B.D.1
-
41
-
-
0025670892
-
The multilayer perceptron as an approximation to a Bayes optimal discriminant function
-
Dec
-
Ruck D W, Rogers S K, Kabrisky M, Oxley M E & Suter B W, The Multilayer Perceptron as an Approximation to a Bayes Optimal Discriminant Function, IEEE Trans. on Neural Networks, Vol. 1, No. 4, Dec 1990, pp. 296-298.
-
(1990)
IEEE Trans. on Neural Networks
, vol.1
, Issue.4
, pp. 296-298
-
-
Ruck, D.W.1
Rogers, S.K.2
Kabrisky, M.3
Oxley, M.E.4
Suter, B.W.5
-
42
-
-
0000646059
-
Learning internal representations by error propagation
-
Rumelhart D E, McCelland J L & PDP Research Group, MIT Press
-
Rumelhart D E, Hinton G E & Williams R J, Learning Internal Representations by Error Propagation. In: Rumelhart D E, McCelland J L & PDP Research Group, Parallel Distributed Processing, Vol. 1: Foundations, MIT Press, 1986, pp. 318-362.
-
(1986)
Parallel Distributed Processing, Vol. 1: Foundations
, vol.1
, pp. 318-362
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
45
-
-
0001572432
-
A comparison of some error estimates for neural network models
-
Tibshirani R, A comparison of some error estimates for neural network models, Neural Computation, Vol. 8, 1996, pp. 152-163.
-
(1996)
Neural Computation
, vol.8
, pp. 152-163
-
-
Tibshirani, R.1
-
46
-
-
0028529307
-
Knowledge-based artificial neural networks
-
Towell G G & Shavlik J W, Knowledge-Based Artificial Neural Networks, Artificial Intelligence, Vol. 70, 1994, pp. 119-165.
-
(1994)
Artificial Intelligence
, vol.70
, pp. 119-165
-
-
Towell, G.G.1
Shavlik, J.W.2
-
47
-
-
0025597157
-
Neural network classification: A Bayesian interpretation
-
Dec
-
Wan E A, Neural Network Classification: A Bayesian Interpretation, IEEE Trans. on Neural Networks, Vol. 1, No. 4, Dec 1990, pp. 303-305.
-
(1990)
IEEE Trans. on Neural Networks
, vol.1
, Issue.4
, pp. 303-305
-
-
Wan, E.A.1
-
48
-
-
0003932630
-
-
Morgan Kaufmann
-
Weiss S M & Kulikowski C A, Computer Systems that Leam: Classification and Prediction Methods from Statistics, Neural Nets, Machine Leaming, and Expert Systems, Morgan Kaufmann, 1991.
-
(1991)
Computer Systems that Leam: Classification and Prediction Methods from Statistics, Neural Nets, Machine Leaming, and Expert Systems
-
-
Weiss, S.M.1
Kulikowski, C.A.2
-
51
-
-
0037545145
-
No free lunch for cross-validation
-
Zhu H & Rohwer R, No free lunch for cross-validation, Neural Computation, Vol. 8, 1996, pp. 1421-1426.
-
(1996)
Neural Computation
, vol.8
, pp. 1421-1426
-
-
Zhu, H.1
Rohwer, R.2
|