-
1
-
-
0032021921
-
-
T. Morita, B. R. Maughon, and R. H. Grubbs, Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem., 39, 226 (1998); M. A. Hillmyer, S. T. Nguyen, and R. H. Grubbs, Macromolecules, 30, 718 (1997); P. O. Nubel, H. B. Yokelson, C. A. Lutman, W. G. Bouslog, R. T. Behrends, and K. D. Runge, J. Mol. Catal. A, Chem., 115, 43 (1997); M. A. Hillmyer and R. H. Grubbs, Macromolecules, 28, 8662 (1995), and references cited therein.
-
(1998)
Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem.
, vol.39
, pp. 226
-
-
Morita, T.1
Maughon, B.R.2
Grubbs, R.H.3
-
2
-
-
0031078006
-
-
T. Morita, B. R. Maughon, and R. H. Grubbs, Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem., 39, 226 (1998); M. A. Hillmyer, S. T. Nguyen, and R. H. Grubbs, Macromolecules, 30, 718 (1997); P. O. Nubel, H. B. Yokelson, C. A. Lutman, W. G. Bouslog, R. T. Behrends, and K. D. Runge, J. Mol. Catal. A, Chem., 115, 43 (1997); M. A. Hillmyer and R. H. Grubbs, Macromolecules, 28, 8662 (1995), and references cited therein.
-
(1997)
Macromolecules
, vol.30
, pp. 718
-
-
Hillmyer, M.A.1
Nguyen, S.T.2
Grubbs, R.H.3
-
3
-
-
0031036993
-
-
T. Morita, B. R. Maughon, and R. H. Grubbs, Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem., 39, 226 (1998); M. A. Hillmyer, S. T. Nguyen, and R. H. Grubbs, Macromolecules, 30, 718 (1997); P. O. Nubel, H. B. Yokelson, C. A. Lutman, W. G. Bouslog, R. T. Behrends, and K. D. Runge, J. Mol. Catal. A, Chem., 115, 43 (1997); M. A. Hillmyer and R. H. Grubbs, Macromolecules, 28, 8662 (1995), and references cited therein.
-
(1997)
J. Mol. Catal. A, Chem.
, vol.115
, pp. 43
-
-
Nubel, P.O.1
Yokelson, H.B.2
Lutman, C.A.3
Bouslog, W.G.4
Behrends, R.T.5
Runge, K.D.6
-
4
-
-
0001277889
-
-
and references cited therein
-
T. Morita, B. R. Maughon, and R. H. Grubbs, Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem., 39, 226 (1998); M. A. Hillmyer, S. T. Nguyen, and R. H. Grubbs, Macromolecules, 30, 718 (1997); P. O. Nubel, H. B. Yokelson, C. A. Lutman, W. G. Bouslog, R. T. Behrends, and K. D. Runge, J. Mol. Catal. A, Chem., 115, 43 (1997); M. A. Hillmyer and R. H. Grubbs, Macromolecules, 28, 8662 (1995), and references cited therein.
-
(1995)
Macromolecules
, vol.28
, pp. 8662
-
-
Hillmyer, M.A.1
Grubbs, R.H.2
-
5
-
-
0000812356
-
-
Vinyl ethers are commonly used as a terminator of ROMP: M. A. Hillmyer, W. R. Laredo, and R. H. Grubbs, Macromolecules, 28, 6311 (1995); S. Kanaoka and R. H. Grubbs, Macromolecules, 28, 4707 (1995).
-
(1995)
Macromolecules
, vol.28
, pp. 6311
-
-
Hillmyer, M.A.1
Laredo, W.R.2
Grubbs, R.H.3
-
6
-
-
0029323585
-
-
Vinyl ethers are commonly used as a terminator of ROMP: M. A. Hillmyer, W. R. Laredo, and R. H. Grubbs, Macromolecules, 28, 6311 (1995); S. Kanaoka and R. H. Grubbs, Macromolecules, 28, 4707 (1995).
-
(1995)
Macromolecules
, vol.28
, pp. 4707
-
-
Kanaoka, S.1
Grubbs, R.H.2
-
9
-
-
0009079517
-
-
note
-
Owing to low efficiency of the vinylidene initiator, the molecular weight observed in the absence of vinylic compounds was significantly higher than that expected from the monomer to catalyst ratio: see Ref. 3.
-
-
-
-
11
-
-
0000714675
-
-
n values are known to be approximately half of the GPC data based on polystyrene standards: Ref. 6; T. J. Katz, S. J. Lee, and N. Acton, Tetrahedron Lett., 1976, 4247; T. J. Katz, and N. Acton, Tetrahedron Lett., 1976, 4251.
-
Tetrahedron Lett.
, vol.1976
, pp. 4247
-
-
Katz, T.J.1
Lee, S.J.2
Acton, N.3
-
12
-
-
0000714675
-
-
n values are known to be approximately half of the GPC data based on polystyrene standards: Ref. 6; T. J. Katz, S. J. Lee, and N. Acton, Tetrahedron Lett., 1976, 4247; T. J. Katz, and N. Acton, Tetrahedron Lett., 1976, 4251.
-
Tetrahedron Lett.
, vol.1976
, pp. 4251
-
-
Katz, T.J.1
Acton, N.2
-
13
-
-
0001855961
-
-
P. Schwab, R. H. Grubbs, and J. W. Ziller, J. Am. Chem. Soc., 118, 100 (1996).
-
(1996)
J. Am. Chem. Soc.
, vol.118
, pp. 100
-
-
Schwab, P.1
Grubbs, R.H.2
Ziller, J.W.3
-
14
-
-
0009070721
-
-
note
-
3) δ 30.9 (s).
-
-
-
-
15
-
-
0009080338
-
-
unpublished results
-
This fact indicates that the reaction of 3 with norbornene serves as the rate-determining step of the catalytic cycle in Scheme 1. Therefore, it may be considered that the difference in the polymerization rates dependent upon the CTAs are mainly due to the reactivities of Fischer-type carbene intermediates toward olefin-metathesis. Actually, the isolated thiocarbene complex (3a) exhibited much higher reactivity than the oxycarbene analog toward ROMP of norbornene, which is consistent with the particularly high reactivity of the catalytic system using phenyl vinyl sulfide as a CTA (Table 1, run 5): H. Katayama, H. Urushima, T. Nishioka, and F. Ozawa, unpublished results.
-
-
-
Katayama, H.1
Urushima, H.2
Nishioka, T.3
Ozawa, F.4
-
17
-
-
0000449988
-
-
ed by A. Fürstner, Springer-Verlag, Berlin
-
For olefin-metathesis reactions of Fischer-type carbene complexes, see: M. Mori, in "Alkene Metathesis in Organic Synthesis," ed by A. Fürstner, Springer-Verlag, Berlin (1998), p. 133; M. Hoffmann, M. Buchert, and H.-U. Reissig, Angew. Chem., Int. Ed. Engl., 36, 283 (1997).
-
(1998)
Alkene Metathesis in Organic Synthesis
, pp. 133
-
-
Mori, M.1
-
18
-
-
0030945984
-
-
For olefin-metathesis reactions of Fischer-type carbene complexes, see: M. Mori, in "Alkene Metathesis in Organic Synthesis," ed by A. Fürstner, Springer-Verlag, Berlin (1998), p. 133; M. Hoffmann, M. Buchert, and H.-U. Reissig, Angew. Chem., Int. Ed. Engl., 36, 283 (1997).
-
(1997)
Angew. Chem., Int. Ed. Engl.
, vol.36
, pp. 283
-
-
Hoffmann, M.1
Buchert, M.2
Reissig, H.-U.3
|