-
1
-
-
0027317135
-
-
N. V. Hud, M. J. Allen, K. H. Downing, J. Lee, R. Balhorn, Biochem. Biophys. Res. Commun. 193, 1347 (1993).
-
(1993)
Biochem. Biophys. Res. Commun.
, vol.193
, pp. 1347
-
-
Hud, N.V.1
Allen, M.J.2
Downing, K.H.3
Lee, J.4
Balhorn, R.5
-
2
-
-
0002619091
-
-
C. Gagnon, Ed. Cache River Press, Vienna, IL
-
R. Balhorn et al., in The Male Gamete: From Basic Science to Clinical Applications, C. Gagnon, Ed. (Cache River Press, Vienna, IL, 1999), pp. 55-70.
-
(1999)
The Male Gamete: From Basic Science to Clinical Applications
, pp. 55-70
-
-
Balhorn, R.1
-
3
-
-
0015839714
-
-
K. E. Richards, R. C. Williams, R. Calender, J. Mol. Biol. 78, 255 (1973); S. M. Klimenko, T. I. Tikchonenko, V. M Andreev, ibid. 23, 523 (1967); N. V. Hud, Biophys. J. 69, 1355 (1995).
-
(1973)
J. Mol. Biol.
, vol.78
, pp. 255
-
-
Richards, K.E.1
Williams, R.C.2
Calender, R.3
-
4
-
-
0014202278
-
-
K. E. Richards, R. C. Williams, R. Calender, J. Mol. Biol. 78, 255 (1973); S. M. Klimenko, T. I. Tikchonenko, V. M Andreev, ibid. 23, 523 (1967); N. V. Hud, Biophys. J. 69, 1355 (1995).
-
(1967)
J. Mol. Biol.
, vol.23
, pp. 523
-
-
Klimenko, S.M.1
Tikchonenko, T.I.2
Andreev, V.M.3
-
5
-
-
0029148982
-
-
K. E. Richards, R. C. Williams, R. Calender, J. Mol. Biol. 78, 255 (1973); S. M. Klimenko, T. I. Tikchonenko, V. M Andreev, ibid. 23, 523 (1967); N. V. Hud, Biophys. J. 69, 1355 (1995).
-
(1995)
Biophys. J.
, vol.69
, pp. 1355
-
-
Hud, N.V.1
-
6
-
-
0000073193
-
-
K. W. Adolph, Ed. Springer-Verlag, New York
-
R. Balhorn, in Molecular Biology of Chromosome Function, K. W. Adolph, Ed. (Springer-Verlag, New York, 1989), p. 366.
-
(1989)
Molecular Biology of Chromosome Function
, pp. 366
-
-
Balhorn, R.1
-
8
-
-
0029870112
-
-
G. S. Bench, A. M. Friz, M. H. Corzett, D. H. Morse, R. Balhorn, Cytometry 23, 263 (1996).
-
(1996)
Cytometry
, vol.23
, pp. 263
-
-
Bench, G.S.1
Friz, A.M.2
Corzett, M.H.3
Morse, D.H.4
Balhorn, R.5
-
9
-
-
0020484164
-
-
T. M. Cao, M. T. Sung, Biochem. Biophys. Res. Commun. 108, (1982); S. Maeda, S. G. Kamita, H. Kataoka, Repeat. Virol. 180, 807 (1991).
-
(1982)
Biochem. Biophys. Res. Commun.
, vol.108
-
-
Cao, T.M.1
Sung, M.T.2
-
10
-
-
0025977575
-
-
T. M. Cao, M. T. Sung, Biochem. Biophys. Res. Commun. 108, (1982); S. Maeda, S. G. Kamita, H. Kataoka, Repeat. Virol. 180, 807 (1991).
-
(1991)
Repeat. Virol.
, vol.180
, pp. 807
-
-
Maeda, S.1
Kamita, S.G.2
Kataoka, H.3
-
11
-
-
0019333291
-
-
J. Widom and R. L. Baldwin, J. Mol. Biol. 144, 431(1980); C. B. Post and B. H. Zimm, Biopolymers 21, 2139 (1982); D. Porschke, J. Mol. Biol. 222, 423 (1991).
-
(1980)
J. Mol. Biol.
, vol.144
, pp. 431
-
-
Widom, J.1
Baldwin, R.L.2
-
12
-
-
0020210321
-
-
J. Widom and R. L. Baldwin, J. Mol. Biol. 144, 431(1980); C. B. Post and B. H. Zimm, Biopolymers 21, 2139 (1982); D. Porschke, J. Mol. Biol. 222, 423 (1991).
-
(1982)
Biopolymers
, vol.21
, pp. 2139
-
-
Post, C.B.1
Zimm, B.H.2
-
13
-
-
0026410234
-
-
J. Widom and R. L. Baldwin, J. Mol. Biol. 144, 431(1980); C. B. Post and B. H. Zimm, Biopolymers 21, 2139 (1982); D. Porschke, J. Mol. Biol. 222, 423 (1991).
-
(1991)
J. Mol. Biol.
, vol.222
, pp. 423
-
-
Porschke, D.1
-
15
-
-
0025066887
-
-
P. G. Arscott, A. Li, V. A. Bloomfield, Biopolymers 30, 619 (1990); V. A. Bloomfield, ibid. 44, 269 (1998).
-
(1990)
Biopolymers
, vol.30
, pp. 619
-
-
Arscott, P.G.1
Li, A.2
Bloomfield, V.A.3
-
16
-
-
0031447208
-
-
P. G. Arscott, A. Li, V. A. Bloomfield, Biopolymers 30, 619 (1990); V. A. Bloomfield, ibid. 44, 269 (1998).
-
(1998)
Biopolymers
, vol.44
, pp. 269
-
-
Bloomfield, V.A.1
-
19
-
-
0030947539
-
-
C. G. Baumann, S. B. Smith, V. A. Bloomfield, C. Bustamante, Proc. Natl. Acad. Sci. U.S.A. 94, 6185 (1997).
-
(1997)
Proc. Natl. Acad. Sci. U.S.A.
, vol.94
, pp. 6185
-
-
Baumann, C.G.1
Smith, S.B.2
Bloomfield, V.A.3
Bustamante, C.4
-
20
-
-
0344761064
-
-
note
-
3 (pH 8), 30 mM DTT, and stored under nitrogen.
-
-
-
-
21
-
-
0344329029
-
-
note
-
The optical trap was formed by focusing laser light from a solid-state Nd-YLF laser (λ= 1.047 μm, Spectra-Physics) through a Zeiss × 100 Plan Neofluor, oil immersion, infinite conjugate, objective. A Zeiss Axioplan microscope was modified by removing the illumination optics to allow entry of the laser. The typical laser power used to form the trap (exiting the microscope objective) was 50 mW.
-
-
-
-
22
-
-
0345191443
-
-
note
-
The fluorescence was detected with an image-intensified charge-coupled device camera (PAULTEK), the signal was recorded on an SVHS VCR, and an Argus Image Processor (Hamamatsu) and a frame grabber (National Instruments PCI 1402) were used to perform background subtraction. The lengths of the DNA molecules, measured between the center of the 1-μm bead and the free end of the molecule, were obtained from frame-grabbed images. The length of stained DNA (48.5 kb) extended by flow was measured to be 19.2 ± 0.82 μm at a flow rate of 72 μm/s in 50% sucrose. Under these conditions, DNA is 93% extended (24).
-
-
-
-
23
-
-
0345623607
-
-
note
-
The salmon protamine used in these experiments contains 21 positively charged arginines distributed throughout the length of the protein (32 amino acids).
-
-
-
-
25
-
-
0345191442
-
-
note
-
Stokes' law, f = 6πηrv, where η is the buffer viscosity (15.4 cp), r is the sphere radius, and v is the buffer velocity (50 μm/s), was used to calculate the frictional force on the fully formed toroid. The toroid used to calculate the frictional force had a 90-nm outer diameter and a 30-nm inner diameter and was 20 nm thick (1).
-
-
-
-
26
-
-
0344761063
-
-
note
-
Because we cannot confirm that every protamine has dissociated from the decondensed DNA molecule, these experiments provide only a maximum value for the off-rate.
-
-
-
-
29
-
-
0345623605
-
-
note
-
6 domain would remain bound to the sperm genome for only 2 hours. This is too short a period of time, because the protamine must remain bound to DNA and maintain the sperm chromatin in an inactive state for up to 2 weeks before fertilization.
-
-
-
-
30
-
-
0029638377
-
-
T. T. Perkins, D. E. Smith, R. G. Larson, S. Chu, Science 268, 83 (1995).
-
(1995)
Science
, vol.268
, pp. 83
-
-
Perkins, T.T.1
Smith, D.E.2
Larson, R.G.3
Chu, S.4
-
31
-
-
0345623604
-
-
note
-
The flow cell contains two channels, each pumped at the same speed with a single syringe pump. The depth of the flow cell was 40 μm and the molecule was typically held 20 μm beneath the coverslip. Flow velocities were maintained at ∼50 μm/s. Using a computer-controlled stage with 0.1-μm resolution to manipulate the position of the flow cell relative to the optical trap, we moved the DNA molecule to the protein side of the flow cell to initiate condensation.
-
-
-
-
32
-
-
0344328421
-
-
note
-
Work was performed at Lawrence Livermore National Laboratory (LLNL) under the auspices of the U.S. Department of Energy under contract W-7405-ENG-48. Funding was provided by a LLNL Labwide Laboratory Directed Research Development Award. We thank J. Holzrichter, M. Colvin, and M. Cosman for their suggestions, support, and encouragement; J. W. Cosman and C. Barry for help during the early stages of the study; and J. T. Cosman for generating the computer graphics image of DNA.
-
-
-
|