메뉴 건너뛰기




Volumn 9, Issue 4, 1999, Pages 461-466

Central neural mechanisms for detecting second-order motion

Author keywords

[No Author keywords available]

Indexed keywords

CONTRAST; ILLUSION; LUMINANCE; MOVEMENT PERCEPTION; PRIORITY JOURNAL; PSYCHOPHYSICS; REVIEW; SIGNAL PROCESSING; VISION; VISUAL CORTEX;

EID: 0033178809     PISSN: 09594388     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0959-4388(99)80069-5     Document Type: Article
Times cited : (142)

References (56)
  • 1
    • 0024117651 scopus 로고
    • Drift-balanced random stimuli: A general basis for studying non-Fourier motion perception
    • 1. Chubb C, Sperling G: Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception. J Opt Soc Am 1988, 5:1986-2007.
    • (1988) J Opt Soc Am , vol.5 , pp. 1986-2007
    • Chubb, C.1    Sperling, G.2
  • 2
    • 0024893590 scopus 로고
    • Motion: The long and short of it
    • 2. Cavanagh P, Mather G: Motion: the long and short of it Spatial Vision 1989, 4:103-129.
    • (1989) Spatial Vision , vol.4 , pp. 103-129
    • Cavanagh, P.1    Mather, G.2
  • 3
    • 0000341065 scopus 로고    scopus 로고
    • Linearity and gain control in V1 simple cells
    • Edited by Jones EG, Ulinski PS. New York: Kluwer Academic/Plenum
    • 3. Carandini M, Heeger DJ, Movshon JA: Linearity and gain control in V1 simple cells. In Cerebral Cortex, vol. 13. Cortical Models. Edited by Jones EG, Ulinski PS. New York: Kluwer Academic/Plenum; 1999:401-443. This book chapter summarizes a popular model of first-order processing in V1 simple cells, in which stimulus selectivity is largely determined by linear spatiotemporal filtering followed by a threshold; the filter's gain is determined by pooled responses of nearby receptive fields. A model of a possible biophysical implementation of the filtering and gain control is described.
    • (1999) Cerebral Cortex, Vol. 13. Cortical Models , vol.13 , pp. 401-443
    • Carandini, M.1    Heeger, D.J.2    Movshon, J.A.3
  • 4
    • 0031027114 scopus 로고    scopus 로고
    • Separate detection of moving luminance and contrast modulations: Fact or artifact?
    • 4. Smith AT, Ledgeway T: Separate detection of moving luminance and contrast modulations: fact or artifact? Vision Res 1997, 37:45-62. These authors demonstrate that psychophysical detection of commonly used second-order motion stimuli having static carrier patterns can be mediated via artifactual first-order information. They show that this problem can be avoided by using dynamic noise carriers or by high-pass filtering a static carrier.
    • (1997) Vision Res , vol.37 , pp. 45-62
    • Smith, A.T.1    Ledgeway, T.2
  • 5
    • 0031011574 scopus 로고    scopus 로고
    • Nonlinear preprocessing in short-range motion
    • 5. Taub E, Victor JD, Conte MM: Nonlinear preprocessing in short-range motion. Vision Res 1997, 37:1459-1477.
    • (1997) Vision Res , vol.37 , pp. 1459-1477
    • Taub, E.1    Victor, J.D.2    Conte, M.M.3
  • 6
    • 0028029737 scopus 로고
    • Envelope-responsive neurons in areas 17 and 18 of cat
    • 6. Zhou YX, Baker CL Jr: Envelope-responsive neurons in areas 17 and 18 of cat J Neurophysiol 1994, 72:2134-2150.
    • (1994) J Neurophysiol , vol.72 , pp. 2134-2150
    • Zhou, Y.X.1    Baker C.L., Jr.2
  • 7
    • 0033046172 scopus 로고    scopus 로고
    • Does early non-linearity account for second-order motion?
    • 7. Scott-Samuel NE, Georgeson MA: Does early non-linearity account for second-order motion? Vision Res 1999, 39:2853-2865. These authors use luminance nulling methods to measure psyohophysically the signal that could come from early nonlinear detection of second-order stimuli. They find that this contribution is weak and significantly affects psychophysical detection thresholds only at temporal frequencies above about 8 Hz. These findings imply that a separate processing mechanism exists for second-order stimuli at low temporal frequencies.
    • (1999) Vision Res , vol.39 , pp. 2853-2865
    • Scott-Samuel, N.E.1    Georgeson, M.A.2
  • 8
    • 0028068986 scopus 로고
    • Different processes underlie the detection of second-order motion at low and high temporal frequencies
    • 8. Holliday IE, Anderson SJ: Different processes underlie the detection of second-order motion at low and high temporal frequencies. Proc Roy Soc Lond [Biol] 1994, 257:165-173.
    • (1994) Proc Roy Soc Lond [Biol] , vol.257 , pp. 165-173
    • Holliday, I.E.1    Anderson, S.J.2
  • 9
    • 0032054253 scopus 로고    scopus 로고
    • Contrast-modulation flicker: Dynamics and spatial resolution of the light adaptation process
    • 9. He S, Macleod DI: Contrast-modulation flicker: dynamics and spatial resolution of the light adaptation process. Vision Res 1998, 38:985-1000.
    • (1998) Vision Res , vol.38 , pp. 985-1000
    • He, S.1    Macleod, D.I.2
  • 10
    • 0033137090 scopus 로고    scopus 로고
    • Cortical processing of second-order motion
    • 10. Mareschal I, Baker CL Jr: Cortical processing of second-order motion. Vis Neurosci 1999, 16:1-14. Recording from cat A18 neurons, we found that contrast-envelope-responsive neurons showed narrow bandpass tuning for carrier spatial frequencies 8-30-fold higher than the cell's optimal envelope spatial frequencies. Cells were also selective for carrier orientation, with broad bandwidths, and no systematic relationship between preferred orientations of carrier and envelope. Some cells preferred carriers orthogonal to their envelopes, suggesting that they respond to illusory contour stimuli (Figure 1c).
    • (1999) Vis Neurosci , vol.16 , pp. 1-14
    • Mareschal, I.1    Baker C.L., Jr.2
  • 11
    • 0030820183 scopus 로고    scopus 로고
    • Dual multiple-scale processing for motion in the human visual system
    • 11. Nishida S, Ledgeway T, Edwards M: Dual multiple-scale processing for motion in the human visual system. Vision Res 1997, 37:2685-2698. These psychophysical experiments show spatial frequency selective elevation of first-order motion thresholds only by adapting to first-order stimuli, and of second-order motion thresholds only by adapting to second-order stimuli; little or no cross-adaptation was found. These results support separate early motion mechanisms for processing the two kinds of stimuli.
    • (1997) Vision Res , vol.37 , pp. 2685-2698
    • Nishida, S.1    Ledgeway, T.2    Edwards, M.3
  • 12
    • 0032999644 scopus 로고    scopus 로고
    • Sensitivity to modulations of luminance and contrast in visual white noise: Separate mechanisms with similar behaviour
    • 12. Schofield AJ, Georgeson MA: Sensitivity to modulations of luminance and contrast in visual white noise: separate mechanisms with similar behaviour. Vision Res 1999, 39:2697-2716. Psychophysical thresholds for detection of static first-order (luminance grating) and second-order (contrast modulation) patterns were specifically facilitated by background levels of the same order, but were not facilitated by stimuli of different order. The results were best fit with a model involving summation of signals from separate pathways for first-and second-order processing.
    • (1999) Vision Res , vol.39 , pp. 2697-2716
    • Schofield, A.J.1    Georgeson, M.A.2
  • 13
    • 0031986315 scopus 로고    scopus 로고
    • A nonlinear chromatic motion mechanism
    • 13. Baker CL Jr, Boulton JC, Mullen KT: A nonlinear chromatic motion mechanism. Vision Res 1998, 38:291-302. Using random Gabor kinematograms constructed of isoluminant chromatic Gabor micropatterns, with added luminance masking noise, we found robust second-but not first-order motion. Isochromatic stimuli, however, supported both first-and second-order motion. This result suggests that processing of first-order motion with chromatic stimuli is attributable to cross-activation of luminance mechanisms and that chromatically defined stimuli should not be defined as 'first-order'.
    • (1998) Vision Res , vol.38 , pp. 291-302
    • Baker C.L., Jr.1    Boulton, J.C.2    Mullen, K.T.3
  • 14
    • 0027290796 scopus 로고
    • Discriminating the direction of second-order motion at short stimulus durations
    • 14. Derrington AM, Badcock DR, Henning GB: Discriminating the direction of second-order motion at short stimulus durations. Vision Res 1993, 33:1785-1794.
    • (1993) Vision Res , vol.33 , pp. 1785-1794
    • Derrington, A.M.1    Badcock, D.R.2    Henning, G.B.3
  • 15
    • 0031692715 scopus 로고    scopus 로고
    • Temporal resolution of dichoptic and second order motion mechanisms
    • 15. Derrington A, Cox M: Temporal resolution of dichoptic and second order motion mechanisms. Vision Res 1998, 38:3531-3539. The authors demonstrate that human motion perception has a lower temporal resolution for second-order contrast envelopes than for first-order luminance gratings. They also show that both kinds of motion mechanism are able to combine signals binocularly, consistent with processing in early visual cortical areas.
    • (1998) Vision Res , vol.38 , pp. 3531-3539
    • Derrington, A.1    Cox, M.2
  • 16
    • 0032008309 scopus 로고    scopus 로고
    • Sensitivity to second-order motion as a function of temporal frequency and eccentricity
    • 16. Smith AT, Ledgeway T: Sensitivity to second-order motion as a function of temporal frequency and eccentricity. Vision Res 1998, 38:403-410. Using second-order stimuli constructed to avoid first-order artifacts (e.g. static noise carriers with small texture elements or dynamic noise carriers), the authors find slower temporal dynamics than for comparable first-order gratings. This result supports the notion of separate processing of first-and second-order stimuli.
    • (1998) Vision Res , vol.38 , pp. 403-410
    • Smith, A.T.1    Ledgeway, T.2
  • 17
    • 0025320268 scopus 로고
    • The temporal range of motion sensing and motion perception
    • 17. Georgeson MA, Harris MG: The temporal range of motion sensing and motion perception. Vision Res 1990, 30:615-619.
    • (1990) Vision Res , vol.30 , pp. 615-619
    • Georgeson, M.A.1    Harris, M.G.2
  • 18
    • 0027291604 scopus 로고
    • Dependence on stimulus onset asynchrony in apparent motion: Evidence for two mechanisms
    • 18. Boulton JC, Baker CL Jr: Dependence on stimulus onset asynchrony in apparent motion: evidence for two mechanisms. Vision Res 1993, 33:2013-2019.
    • (1993) Vision Res , vol.33 , pp. 2013-2019
    • Boulton, J.C.1    Baker C.L., Jr.2
  • 19
    • 0029945226 scopus 로고    scopus 로고
    • Fourier and non-Fourier pattern discrimination compared
    • 19. Lin LM, Wilson HR: Fourier and non-Fourier pattern discrimination compared. Vision Res 1996, 36:1907-1918.
    • (1996) Vision Res , vol.36 , pp. 1907-1918
    • Lin, L.M.1    Wilson, H.R.2
  • 20
    • 0030331638 scopus 로고    scopus 로고
    • Contrast gain control in first- and second-order motion perception
    • 20. Lu ZL, Sperling G: Contrast gain control in first-and second-order motion perception. J Opt Soc Am [A] 1996, 13:2305-2318.
    • (1996) J Opt Soc Am [A] , vol.13 , pp. 2305-2318
    • Lu, Z.L.1    Sperling, G.2
  • 21
    • 0030793068 scopus 로고    scopus 로고
    • The effects of distractor elements on direction discrimination in random Gabor kinematograms
    • 21. Bex PJ, Baker CL Jr: The effects of distractor elements on direction discrimination in random Gabor kinematograms. Vision Res 1997, 37:1761-1767.
    • (1997) Vision Res , vol.37 , pp. 1761-1767
    • Bex, P.J.1    Baker C.L., Jr.2
  • 22
    • 0033120320 scopus 로고    scopus 로고
    • Second-order motion discrimination by feature-tracking
    • 22. Derrington AM, Ukkonen OI: Second-order motion discrimination by feature-tracking. Vision Res 1999, 39:1465-1475. A stimulus is constructed so that first-and second-order components move in opposite directions, and the effects of an added masking stimulus are evaluated. The most effective mask for second-order motion is one having the same carrier spatial frequency, consistent with the early filtering of a filter→rectify→filter model (Figure 2) being narrowband.
    • (1999) Vision Res , vol.39 , pp. 1465-1475
    • Derrington, A.M.1    Ukkonen, O.I.2
  • 23
    • 0026508423 scopus 로고
    • Form-cue invariant motion processing in primate visual cortex
    • 23. Albright TD: Form-cue invariant motion processing in primate visual cortex. Science 1992, 255:1141-1143.
    • (1992) Science , vol.255 , pp. 1141-1143
    • Albright, T.D.1
  • 24
    • 0026021959 scopus 로고
    • Subjective contours - Bridging the gap between psychophysics and physiology
    • 24. Peterhans E, von der Heydt R: Subjective contours - bridging the gap between psychophysics and physiology. Trends Neurosci 1991, 14:112-119.
    • (1991) Trends Neurosci , vol.14 , pp. 112-119
    • Peterhans, E.1    Von Der Heydt, R.2
  • 25
    • 0027451270 scopus 로고
    • Macaque V1 neurons can signal 'illusory' contours
    • 25. Grosof DH, Shapley RM, Hawken MJ: Macaque V1 neurons can signal 'illusory' contours. Nature 1993, 365:550-552.
    • (1993) Nature , vol.365 , pp. 550-552
    • Grosof, D.H.1    Shapley, R.M.2    Hawken, M.J.3
  • 26
    • 0031239936 scopus 로고    scopus 로고
    • Neuronal responses to edges defined by luminance vs. temporal texture in macaque area V1
    • 26. Chaudhuri A, Albright TD: Neuronal responses to edges defined by luminance vs. temporal texture in macaque area V1. Vis Neurosci 1997, 14:949-962. The authors report that neurons in monkey V1 are responsive to dynamic noise bars on static noise backgrounds (Figure 1e). Many of these cells showed a similar orientation selectivity for both first-and second-order stimuli, and some were also similarly direction selective. This study is significant for demonstrating the common occurrence of such 'form-cue invariant' responses in primate V1.
    • (1997) Vis Neurosci , vol.14 , pp. 949-962
    • Chaudhuri, A.1    Albright, T.D.2
  • 27
    • 0029931941 scopus 로고    scopus 로고
    • Spatial properties of envelope-responsive cells in area 17 and 18 neurons of the cat
    • 27. Zhou YX, Baker CL Jr: Spatial properties of envelope-responsive cells in area 17 and 18 neurons of the cat. J Neurophysiol 1996, 75:1038-1050.
    • (1996) J Neurophysiol , vol.75 , pp. 1038-1050
    • Zhou, Y.X.1    Baker C.L., Jr.2
  • 28
    • 0032417195 scopus 로고    scopus 로고
    • Temporal and spatial response to second-order stimuli in cat area 18
    • 28. Mareschal I, Baker CL Jr: Temporal and spatial response to second-order stimuli in cat area 18. J Neurophysiol 1998, 80:2811-2823. We recorded the response of cat A18 neurons to contrast envelope stimuli and found that these neurons have bandpass tuning to envelope spatial and temporal frequencies. Most cells prefer somewhat lower spatial and temporal frequencies for envelopes than for luminance gratings. Slower temporal dynamics for envelope responses were also seen in latency, as measured by the slope of temporal phase versus frequency plots.
    • (1998) J Neurophysiol , vol.80 , pp. 2811-2823
    • Mareschal, I.1    Baker C.L., Jr.2
  • 29
    • 0032213099 scopus 로고    scopus 로고
    • Neural correlates of boundary perception
    • 29. Leventhal AG, Wang Y, Schmolesky MT, Zhou Y: Neural correlates of boundary perception. Vis Neurosci 1998, 15:1107-1118. Reports that neurons in cat A17 and A18 respond to texture-defined bars (Figure 1d) and stimuli similar to illusory contours (Figure 1c). The cells exhibited similar orientation and direction selectivity for both first-and second-order stimuli (i.e. form-cue invariance). The demonstration that the same neurons can respond to a variety of second-order stimuli, including illusory contours, supports the idea of a common mechanism for detection of these different stimuli.
    • (1998) Vis Neurosci , vol.15 , pp. 1107-1118
    • Leventhal, A.G.1    Wang, Y.2    Schmolesky, M.T.3    Zhou, Y.4
  • 30
    • 0028964328 scopus 로고
    • Measuring the spatial frequency selectivity of second-order texture mechanisms
    • 30. Sutter A, Sperling G, Chubb C: Measuring the spatial frequency selectivity of second-order texture mechanisms. Vision Res 1995, 35:915-924.
    • (1995) Vision Res , vol.35 , pp. 915-924
    • Sutter, A.1    Sperling, G.2    Chubb, C.3
  • 31
    • 0033121162 scopus 로고    scopus 로고
    • On the mechanism for scale invariance in orientation-defined textures
    • 31. Kingdom FAA, Keeble DRT: On the mechanism for scale invariance in orientation-defined textures. Vision Res 1999, 39:1477-1489.
    • (1999) Vision Res , vol.39 , pp. 1477-1489
    • Kingdom, F.A.A.1    Keeble, D.R.T.2
  • 32
    • 0024742987 scopus 로고
    • Contrast and spatial variables in texture segregation: Testing a simple spatial-frequency channels model
    • 32. Sutter A, Beck J, Graham N: Contrast and spatial variables in texture segregation: testing a simple spatial-frequency channels model. Percept Psychophys 1989, 46:312-332.
    • (1989) Percept Psychophys , vol.46 , pp. 312-332
    • Sutter, A.1    Beck, J.2    Graham, N.3
  • 33
    • 0025427592 scopus 로고
    • Preattentive texture discrimination with early vision mechanisms
    • 33. Malik J, Perona P: Preattentive texture discrimination with early vision mechanisms. J Opt Soc Am [A] 1990, 7:923-932.
    • (1990) J Opt Soc Am [A] , vol.7 , pp. 923-932
    • Malik, J.1    Perona, P.2
  • 34
    • 0000493280 scopus 로고
    • Computational modelling of visual texture segregation
    • Edited by Landy MS, Movshon JA. Cambridge, MA: MIT Press
    • 34. Bergen JR, Landy MS: Computational modelling of visual texture segregation. In Computational Models of Visual Processing. Edited by Landy MS, Movshon JA. Cambridge, MA: MIT Press; 1991:253-272.
    • (1991) Computational Models of Visual Processing , pp. 253-272
    • Bergen, J.R.1    Landy, M.S.2
  • 35
    • 0026891007 scopus 로고
    • A psychophysically motivated model for two-dimensional motion perception
    • 35. Wilson HR, Ferrera VP, Yo C: A psychophysically motivated model for two-dimensional motion perception. Vis Neurosci 1992, 9:79-97.
    • (1992) Vis Neurosci , vol.9 , pp. 79-97
    • Wilson, H.R.1    Ferrera, V.P.2    Yo, C.3
  • 36
    • 0028043113 scopus 로고
    • Evidence for separate motion-detecting mechanisms for first- and second-order motion in human vision
    • 36. Ledgeway T, Smith AT: Evidence for separate motion-detecting mechanisms for first-and second-order motion in human vision. Vision Res 1994, 34:2727-2740.
    • (1994) Vision Res , vol.34 , pp. 2727-2740
    • Ledgeway, T.1    Smith, A.T.2
  • 37
    • 0027412304 scopus 로고
    • The dimensionality of texture-defined motion: A single channel theory
    • 37. Werkhoven P, Sperling G, Chubb C: The dimensionality of texture-defined motion: a single channel theory. Vision Res 1993, 33:463-485.
    • (1993) Vision Res , vol.33 , pp. 463-485
    • Werkhoven, P.1    Sperling, G.2    Chubb, C.3
  • 38
    • 0029954750 scopus 로고    scopus 로고
    • The analysis of complex motion patterns by form/cue invariant MSTd neurons
    • 38. Geesaman BJ, Andersen RA: The analysis of complex motion patterns by form/cue invariant MSTd neurons. J Neurosci 1996, 16:4716-4732.
    • (1996) J Neurosci , vol.16 , pp. 4716-4732
    • Geesaman, B.J.1    Andersen, R.A.2
  • 39
    • 0026648566 scopus 로고
    • Neural responses to visual texture patterns in middle temporal area of the macaque monkey
    • 39. Olavarria JF, DeYoe EA, Knierim JJ, Fox JM, van Essen DC: Neural responses to visual texture patterns in middle temporal area of the macaque monkey. J Neurophysiol 1992, 68:164-181.
    • (1992) J Neurophysiol , vol.68 , pp. 164-181
    • Olavarria, J.F.1    DeYoe, E.A.2    Knierim, J.J.3    Fox, J.M.4    Van Essen, D.C.5
  • 40
    • 0032032355 scopus 로고    scopus 로고
    • Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey
    • 40. O'Keefe LP, Movshon JA: Processing of first-and second-order motion signals by neurons in area MT of the macaque monkey. Vis Neurosci 1998, 15:305-317.
    • (1998) Vis Neurosci , vol.15 , pp. 305-317
    • O'Keefe, L.P.1    Movshon, J.A.2
  • 41
    • 0028912947 scopus 로고
    • Responses of monkey inferior temporal neurons to luminance-, motion-, and texture-defined gratings
    • 41. Sary G, Vogels R, Kovacs G, Orban GA: Responses of monkey inferior temporal neurons to luminance-, motion-, and texture-defined gratings. J Neurophysiol 1995, 73:1341-1354.
    • (1995) J Neurophysiol , vol.73 , pp. 1341-1354
    • Sary, G.1    Vogels, R.2    Kovacs, G.3    Orban, G.A.4
  • 42
    • 0027769015 scopus 로고
    • The characteristics of residual motion perception in the hemifield contralateral to lateral occipital lesions in humans
    • 42. Plant GT, Nakayama K: The characteristics of residual motion perception in the hemifield contralateral to lateral occipital lesions in humans. Brain 1993, 116:1337-1353.
    • (1993) Brain , vol.116 , pp. 1337-1353
    • Plant, G.T.1    Nakayama, K.2
  • 43
    • 0029848970 scopus 로고    scopus 로고
    • Impairment of the perception of second order motion but not first order motion in a patient with unilateral focal brain damage
    • 43. Vaina LM, Cowey A: Impairment of the perception of second order motion but not first order motion in a patient with unilateral focal brain damage. Proc Roy Soc Lond [Biol] 1996, 263:1225-1232.
    • (1996) Proc Roy Soc Lond [Biol] , vol.263 , pp. 1225-1232
    • Vaina, L.M.1    Cowey, A.2
  • 44
    • 0032031428 scopus 로고    scopus 로고
    • The selective impairment of the perception of first-order motion by unilateral cortical brain damage
    • 44. Vaina LM, Makris N, Kennedy D, Cowey A: The selective impairment of the perception of first-order motion by unilateral cortical brain damage. Vis Neurosci 1998, 15:333-348. Using a wide variety of motion stimuli and psychophysical tasks, the authors examined a brain-damaged patient that has a perceptual deficit that is specific for first-order motion, leaving second-order motion largely intact. This result is especially surprising because one would expect a non-specific deficit of motion perception to have a greater impact on second-than on first-order processing.
    • (1998) Vis Neurosci , vol.15 , pp. 333-348
    • Vaina, L.M.1    Makris, N.2    Kennedy, D.3    Cowey, A.4
  • 45
    • 0031021309 scopus 로고    scopus 로고
    • Detection and discrimination of first- and second-order motion in patients with unilateral brain damage
    • 45. Greenlee MW, Smith AT: Detection and discrimination of first-and second-order motion in patients with unilateral brain damage. J Neurosci 1997, 17:804-818.
    • (1997) J Neurosci , vol.17 , pp. 804-818
    • Greenlee, M.W.1    Smith, A.T.2
  • 46
    • 0032890313 scopus 로고    scopus 로고
    • Perception of first- and second order motion: Separable neurological mechanisms?
    • 46. Vaina LM, Cowey A, Kennedy D: Perception of first-and second order motion: separable neurological mechanisms? Human Brain Mapp 1999, 7:67-77. Anatomic MRI is used to compare the lesions of two brain-damaged patients, one having a perceptual deficit for second-but not first-order motion, and the other showing the reverse pattern. The principal sites of damage are, in both cases, extrastriate, but in complementary brain regions. These results constitute a powerful 'double dissociation' of losses of first-and second-order processing, and argue for separate processing of the two kinds of stimuli.
    • (1999) Human Brain Mapp , vol.7 , pp. 67-77
    • Vaina, L.M.1    Cowey, A.2    Kennedy, D.3
  • 47
    • 0032525186 scopus 로고    scopus 로고
    • The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI)
    • 47. Smith AT, Greenlee MW, Singh KD, Kraemer FM, Hennig J: The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). J Neurosci 1998, 18:3816-3830. fMRI was used to map several known visual areas in individual human brains, whose responses were then measured to first-order and a variety of second-order stimuli. All areas examined were activated by both kinds of stimulus, but in varying degree, with areas V3 and VP more strongly activated by second-order stimuli.
    • (1998) J Neurosci , vol.18 , pp. 3816-3830
    • Smith, A.T.1    Greenlee, M.W.2    Singh, K.D.3    Kraemer, F.M.4    Hennig, J.5
  • 49
    • 0032770339 scopus 로고    scopus 로고
    • Second order components of moving plaids activate extrastriate cortex: A positron emission tomography study
    • 49. Wenderoth P, Watson JD, Egan GF, Tochon-Danguy HJ, O'Keefe GJ: Second order components of moving plaids activate extrastriate cortex: a positron emission tomography study. Neuroimage 1999, 9:227-234. Human brain imaging with PET was used to show brain regions responsive to plaids composed of two added sinewave gratings; responses to the component gratings alone were subtracted. The resultant activation was interpreted as representing the net contrast modulation of the plaid. The surprisingly circumscribed brain regions of activation were in extrastriate visual cortex.
    • (1999) Neuroimage , vol.9 , pp. 227-234
    • Wenderoth, P.1    Watson, J.D.2    Egan, G.F.3    Tochon-Danguy, H.J.4    O'Keefe, G.J.5
  • 51
    • 33644664842 scopus 로고    scopus 로고
    • Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons
    • 51. Sun H, Frost BJ: Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons. Nat Neurosci 1998, 1:296-303.
    • (1998) Nat Neurosci , vol.1 , pp. 296-303
    • Sun, H.1    Frost, B.J.2
  • 52
    • 0032891523 scopus 로고    scopus 로고
    • Computing feature motion without feature detectors: A model for terminator motion without end-stopped cells
    • 52. Loffler G, Orbach HS: Computing feature motion without feature detectors: a model for terminator motion without end-stopped cells. Vision Res 1999, 39:859-871. Computer simulation was used to demonstrate that a model that combines signals from first-and second-order motion processing can correctly signal the motion of terminators of lines, which are thought to be computationally important in higher-level image analysis.
    • (1999) Vision Res , vol.39 , pp. 859-871
    • Loffler, G.1    Orbach, H.S.2
  • 53
    • 0031311156 scopus 로고    scopus 로고
    • Perception of biological motion
    • 53. Ahlstrom V, Blake R, Ahlstrom U: Perception of biological motion. Perception 1997, 26:1539-1548.
    • (1997) Perception , vol.26 , pp. 1539-1548
    • Ahlstrom, V.1    Blake, R.2    Ahlstrom, U.3
  • 54
    • 0031855360 scopus 로고    scopus 로고
    • Second-order motions contribute to vection
    • 54. Gurnsey R, Fleet D, Potechin C: Second-order motions contribute to vection. Vision Res 1998, 38:2801-2816. Second-as well as first-order stimuli are shown to be effective in eliciting vection, a sensation of self-motion induced by large-field optic flow patterns. In contrast, motion aftereffects were much more effectively driven by first-order stimuli. These results indicate one possible high-level functional role of second-order motion.
    • (1998) Vision Res , vol.38 , pp. 2801-2816
    • Gurnsey, R.1    Fleet, D.2    Potechin, C.3
  • 55
    • 0000152283 scopus 로고    scopus 로고
    • Non-Fourier cortical processes in texture, form, and motion perception
    • Edited by Ulinski PS, Jones EG. New York: Kluwer Academic/Plenum
    • 55. Wilson H: Non-Fourier cortical processes in texture, form, and motion perception. In Cerebral Cortex, vol. 13. Cortical Models. Edited by Ulinski PS, Jones EG. New York: Kluwer Academic/Plenum; 1999:445-477. This book chapter gives an overview of a variety of ideas about how filter→rectify→filter models can be powerfully used in the analysis of image structure, such as texture boundaries, illusory contours, curvature, 'non-Cartesian' features, glass patterns, plaids and faces.
    • (1999) Cerebral Cortex, Vol. 13. Cortical Models , vol.13 , pp. 445-477
    • Wilson, H.1
  • 56
    • 0029090094 scopus 로고
    • The functional architecture of human visual motion perception
    • 56. Lu ZL, Sperling G: The functional architecture of human visual motion perception. Vision Res 1995, 35:2697-2722.
    • (1995) Vision Res , vol.35 , pp. 2697-2722
    • Lu, Z.L.1    Sperling, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.