-
1
-
-
0031810672
-
Yeast carbon catabolite repression
-
Gancedo J.M. Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62:1998;334-361.
-
(1998)
Microbiol. Mol. Biol. Rev.
, vol.62
, pp. 334-361
-
-
Gancedo, J.M.1
-
2
-
-
0014016745
-
Repression von Alkoholdehydrogenase, Maltatdehydrogenase Isocitratalyase und Malatsynthase in Hefe durch Glucose
-
Witt I., Kronau R., Holzer H. Repression von Alkoholdehydrogenase, Maltatdehydrogenase Isocitratalyase und Malatsynthase in Hefe durch Glucose. Biochim. Biophys. Acta. 118:1966;522-537.
-
(1966)
Biochim. Biophys. Acta
, vol.118
, pp. 522-537
-
-
Witt, I.1
Kronau, R.2
Holzer, H.3
-
3
-
-
0030293885
-
The mechanism of glucose repression/derepression in yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio
-
Wilson W.A., Hawley S.A., Hardie D.G. The mechanism of glucose repression/derepression in yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr. Biol. 6:1996;1426-1434.
-
(1996)
Curr. Biol.
, vol.6
, pp. 1426-1434
-
-
Wilson, W.A.1
Hawley, S.A.2
Hardie, D.G.3
-
4
-
-
0018969294
-
Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in carbon catabolite repression in yeast
-
Entian K.D. Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in carbon catabolite repression in yeast. Mol. Gen. Genet. 178:1980;633-637.
-
(1980)
Mol. Gen. Genet.
, vol.178
, pp. 633-637
-
-
Entian, K.D.1
-
5
-
-
0021266044
-
Saccharomyces cerevisiae mutants provide evidence of hexokinase PII as a bifunctional enzyme with catalytic and regulatory domains for triggering carbon catabolite repression
-
Entian K.D., Frohlich K.U. Saccharomyces cerevisiae mutants provide evidence of hexokinase PII as a bifunctional enzyme with catalytic and regulatory domains for triggering carbon catabolite repression. J. Bacteriol. 158:1984;29-35.
-
(1984)
J. Bacteriol.
, vol.158
, pp. 29-35
-
-
Entian, K.D.1
Frohlich, K.U.2
-
6
-
-
0024313495
-
The residual enzymatic phosphorylation activity of hexokinase II mutants is correlated with glucose repression in Saccharomyces cerevisiae
-
Ma H.et al. The residual enzymatic phosphorylation activity of hexokinase II mutants is correlated with glucose repression in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:1989;5643-5649.
-
(1989)
Mol. Cell. Biol.
, vol.9
, pp. 5643-5649
-
-
Ma, H.1
-
7
-
-
0025772770
-
Glucose repression in Saccharomyces cerevisiae is directly associated with hexose phosphorylation by hexokinase PI and PII
-
Rose M., Albig W., Entian K.D. Glucose repression in Saccharomyces cerevisiae is directly associated with hexose phosphorylation by hexokinase PI and PII. Eur. J. Biochem. 199:1991;511-518.
-
(1991)
Eur. J. Biochem.
, vol.199
, pp. 511-518
-
-
Rose, M.1
Albig, W.2
Entian, K.D.3
-
8
-
-
0029890944
-
Characterization of the Aspergillus nidulans frA1 mutant: Hexose phosphorylation and apparent lack of involvement of hexokinase in glucose repression
-
Ruijter G.J.et al. Characterization of the Aspergillus nidulans frA1 mutant: hexose phosphorylation and apparent lack of involvement of hexokinase in glucose repression. FEMS Microbiol. Lett. 139:1996;223-228.
-
(1996)
FEMS Microbiol. Lett.
, vol.139
, pp. 223-228
-
-
Ruijter, G.J.1
-
9
-
-
0343371823
-
The inactivation of hexokinase activity does not prevent glucose repression in Candida utilis
-
Espinel A.E., Gómez-Toribio V., Peinado J.M. The inactivation of hexokinase activity does not prevent glucose repression in Candida utilis. FEMS Microbiol. Lett. 135:1996;327-332.
-
(1996)
FEMS Microbiol. Lett.
, vol.135
, pp. 327-332
-
-
Espinel, A.E.1
Gómez-Toribio, V.2
Peinado, J.M.3
-
10
-
-
0022534202
-
A yeast gene that is essential for release from glucose repression encodes a protein kinase
-
Celenza J.L., Carlson M. A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science. 233:1986;1175-1180.
-
(1986)
Science
, vol.233
, pp. 1175-1180
-
-
Celenza, J.L.1
Carlson, M.2
-
11
-
-
0030953974
-
The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex
-
Jiang R., Carlson M. The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex. Mol. Cell. Biol. 17:1996;2099-2106.
-
(1996)
Mol. Cell. Biol.
, vol.17
, pp. 2099-2106
-
-
Jiang, R.1
Carlson, M.2
-
12
-
-
0031717105
-
The AMP-activated/SNF1 protein kinase subfamily: Metabolic sensors of the eukaryotic cell?
-
Hardie D.G., Carling D., Carlson M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem. 67:1998;821-855.
-
(1998)
Annu. Rev. Biochem.
, vol.67
, pp. 821-855
-
-
Hardie, D.G.1
Carling, D.2
Carlson, M.3
-
13
-
-
0029942696
-
FOG1 and FOG2 genes, required for the transcriptional activation of glucose-repressible genes of Kluyveromyces lactis are homologous to GAL83 and SNF1 of Saccharomyces cerevisiae
-
Goffrini P.et al. FOG1 and FOG2 genes, required for the transcriptional activation of glucose-repressible genes of Kluyveromyces lactis are homologous to GAL83 and SNF1 of Saccharomyces cerevisiae. Curr. Genet. 29:1996;316-326.
-
(1996)
Curr. Genet.
, vol.29
, pp. 316-326
-
-
Goffrini, P.1
-
14
-
-
0028942747
-
Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I
-
Dale S.et al. Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I. FEBS Lett. 361:1995;191-195.
-
(1995)
FEBS Lett.
, vol.361
, pp. 191-195
-
-
Dale, S.1
-
15
-
-
0032519837
-
Negative control of the Mig1p repressor by Snf1p-dependent phosphorylation in the absence of glucose
-
Östling J., Ronne H. Negative control of the Mig1p repressor by Snf1p-dependent phosphorylation in the absence of glucose. Eur. J. Biochem. 252:1998;162-168.
-
(1998)
Eur. J. Biochem.
, vol.252
, pp. 162-168
-
-
Östling, J.1
Ronne, H.2
-
16
-
-
0030883032
-
Regulated nuclear translocation of the Mig1 repressor
-
DeVit M.J., Waddle J.A., Johnston M. Regulated nuclear translocation of the Mig1 repressor. Mol. Biol. Cell. 8:1997;1603-1618.
-
(1997)
Mol. Biol. Cell
, vol.8
, pp. 1603-1618
-
-
Devit, M.J.1
Waddle, J.A.2
Johnston, M.3
-
17
-
-
0029910018
-
Characterization of the AMP-activated protein kinase kinase from rat liver, and identification of threonine-172 as the major site at which it phosphorylates and activates AMP-activated protein kinase
-
Hawley S.A.et al. Characterization of the AMP-activated protein kinase kinase from rat liver, and identification of threonine-172 as the major site at which it phosphorylates and activates AMP-activated protein kinase. J. Biol. Chem. 271:1996;27879-27887.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 27879-27887
-
-
Hawley, S.A.1
-
18
-
-
0031007065
-
The AMP-activated protein kinase: Fuel gauge of the mammalian cell?
-
Hardie D.G., Carling D. The AMP-activated protein kinase: fuel gauge of the mammalian cell? Eur. J. Biochem. 246:1997;259-273.
-
(1997)
Eur. J. Biochem.
, vol.246
, pp. 259-273
-
-
Hardie, D.G.1
Carling, D.2
-
19
-
-
0032213768
-
AMP-activated protein kinase is activated by low glucose in cell lines derived from pancreatic β cells, and may regulate insulin release
-
Salt I.P.et al. AMP-activated protein kinase is activated by low glucose in cell lines derived from pancreatic β cells, and may regulate insulin release. Biochem J. 335:1998;533-539.
-
(1998)
Biochem J.
, vol.335
, pp. 533-539
-
-
Salt, I.P.1
-
20
-
-
0028070457
-
Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo
-
Woods A.et al. Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J. Biol. Chem. 269:1994;19509-19515.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 19509-19515
-
-
Woods, A.1
-
21
-
-
0032127148
-
SNF1-related protein kinases: Global regulators of carbon metabolism in plants?
-
Halford N.G., Hardie D.G. SNF1-related protein kinases: global regulators of carbon metabolism in plants? Plant Mol. Biol. 37:1998;735-748.
-
(1998)
Plant Mol. Biol.
, vol.37
, pp. 735-748
-
-
Halford, N.G.1
Hardie, D.G.2
-
22
-
-
0025936416
-
Complementation of snf1, a mutation affecting global regulation of carbon metabolism in yeast, by a plant protein kinase cDNA
-
Alderson A.et al. Complementation of snf1, a mutation affecting global regulation of carbon metabolism in yeast, by a plant protein kinase cDNA. Proc. Natl. Acad. Sci. U. S. A. 88:1991;8602-8605.
-
(1991)
Proc. Natl. Acad. Sci. U. S. A.
, vol.88
, pp. 8602-8605
-
-
Alderson, A.1
-
23
-
-
0028274294
-
Characterization of the tobacco protein kinase NPK5, a homologue of Saccharomyces cerevisiae SNF1 that constitutively activates expression of the glucose-repressible SUC2 gene for a secreted invertase of S. cerevisiae
-
Muranaka T., Banno H., Machida Y. Characterization of the tobacco protein kinase NPK5, a homologue of Saccharomyces cerevisiae SNF1 that constitutively activates expression of the glucose-repressible SUC2 gene for a secreted invertase of S. cerevisiae. Mol. Cell. Biol. 14:1994;2958-2965.
-
(1994)
Mol. Cell. Biol.
, vol.14
, pp. 2958-2965
-
-
Muranaka, T.1
Banno, H.2
Machida, Y.3
-
24
-
-
0030974632
-
Sugar sensing in higher plants
-
Jang J.C., Sheen J. Sugar sensing in higher plants. Trends Plant Sci. 2:1997;208-214.
-
(1997)
Trends Plant Sci.
, vol.2
, pp. 208-214
-
-
Jang, J.C.1
Sheen, J.2
-
25
-
-
0030954967
-
Sweet sensations
-
Taylor C.B. Sweet sensations. Plant Cell. 9:1997;5-19.
-
(1997)
Plant Cell
, vol.9
, pp. 5-19
-
-
Taylor, C.B.1
-
26
-
-
0032082453
-
Sugar regulation of gene expression in plants
-
Smeekens S. Sugar regulation of gene expression in plants. Curr. Opin. Plant Biol. 1:1998;230-234.
-
(1998)
Curr. Opin. Plant Biol.
, vol.1
, pp. 230-234
-
-
Smeekens, S.1
-
27
-
-
1842376846
-
Hexokinase as a sugar sensor in higher plants
-
Jang J.C.et al. Hexokinase as a sugar sensor in higher plants. Plant Cell. 9:1997;5-19.
-
(1997)
Plant Cell
, vol.9
, pp. 5-19
-
-
Jang, J.C.1
-
28
-
-
0028534751
-
Sugar sensing in higher plants
-
Jang J.C., Sheen J. Sugar sensing in higher plants. Plant Cell. 6:1994;1665-1679.
-
(1994)
Plant Cell
, vol.6
, pp. 1665-1679
-
-
Jang, J.C.1
Sheen, J.2
-
29
-
-
0028152032
-
Carbon catabolite repression regulates glyoxylate cycle gene expression in cucumber
-
Graham I.A., Denby K.J., Leaver C.J. Carbon catabolite repression regulates glyoxylate cycle gene expression in cucumber. Plant Cell. 6:1994;761-772.
-
(1994)
Plant Cell
, vol.6
, pp. 761-772
-
-
Graham, I.A.1
Denby, K.J.2
Leaver, C.J.3
-
30
-
-
0031149601
-
Potato SNF1-related protein kinase: Molecular cloning, expression analysis and peptide kinase activity measurements
-
Man A.L.et al. Potato SNF1-related protein kinase: molecular cloning, expression analysis and peptide kinase activity measurements. Plant Mol. Biol. 34:1997;31-43.
-
(1997)
Plant Mol. Biol.
, vol.34
, pp. 31-43
-
-
Man, A.L.1
-
31
-
-
0000020414
-
Systemic acquired resistance mediated by the ectopic expression of invertase: Possible hexose sensing in the secretory pathway
-
Herbers K.et al. Systemic acquired resistance mediated by the ectopic expression of invertase: possible hexose sensing in the secretory pathway. Plant Cell. 8:1996;793-803.
-
(1996)
Plant Cell
, vol.8
, pp. 793-803
-
-
Herbers, K.1
-
32
-
-
0028039637
-
Accumulation of hexoses in leaf vacuoles: Studies with transgenic tobacco plants expressing yeast-derived invertase in the cytosol, vacuole or cytoplasm
-
Heineke D.et al. Accumulation of hexoses in leaf vacuoles: studies with transgenic tobacco plants expressing yeast-derived invertase in the cytosol, vacuole or cytoplasm. Planta. 194:1994;29-33.
-
(1994)
Planta
, vol.194
, pp. 29-33
-
-
Heineke, D.1
-
33
-
-
0029257520
-
Sugar-inducible expression of a gene for β-amylase in Arabidopsis thaliana
-
Mita S., Suzuki-Fujii K., Nakamura K. Sugar-inducible expression of a gene for β-amylase in Arabidopsis thaliana. Plant Physiol. 107:1995;895-904.
-
(1995)
Plant Physiol.
, vol.107
, pp. 895-904
-
-
Mita, S.1
Suzuki-Fujii, K.2
Nakamura, K.3
-
34
-
-
0024787402
-
The steady-state level of potato sucrose synthase mRNA is dependent on wounding, anaerobiosis and sucrose concentration
-
Salanoubat M., Belliard G. The steady-state level of potato sucrose synthase mRNA is dependent on wounding, anaerobiosis and sucrose concentration. Gene. 84:1989;181-185.
-
(1989)
Gene
, vol.84
, pp. 181-185
-
-
Salanoubat, M.1
Belliard, G.2
-
35
-
-
0029360594
-
Sink- And vascular-associated sucrose synthase functions are encoded by different gene classes in potato
-
Fu H., Park W.D. Sink- and vascular-associated sucrose synthase functions are encoded by different gene classes in potato. Plant Cell. 7:1995;1369-1385.
-
(1995)
Plant Cell
, vol.7
, pp. 1369-1385
-
-
Fu, H.1
Park, W.D.2
-
36
-
-
0031861675
-
Antisense expression of a sucrose non-fermenting-1-related protein kinase sequence in potato results in decreased expression of sucrose synthase in tubers and loss of sucrose-inducibility of sucrose synthase transcripts in leaves
-
Purcell P.C., Smith A.M., Halford N.G. Antisense expression of a sucrose non-fermenting-1-related protein kinase sequence in potato results in decreased expression of sucrose synthase in tubers and loss of sucrose-inducibility of sucrose synthase transcripts in leaves. Plant J. 14:1998;195-202.
-
(1998)
Plant J.
, vol.14
, pp. 195-202
-
-
Purcell, P.C.1
Smith, A.M.2
Halford, N.G.3
-
37
-
-
0030161090
-
Sucrose metabolism during cotyledon development of Vicia faba L. is controlled by the concerted action of both sucrose phosphate synthase and sucrose synthase: Expression patterns, metabolic regulation and implications for seed development
-
Weber H.et al. Sucrose metabolism during cotyledon development of Vicia faba L. is controlled by the concerted action of both sucrose phosphate synthase and sucrose synthase: expression patterns, metabolic regulation and implications for seed development. Plant J. 9:1996;841-850.
-
(1996)
Plant J.
, vol.9
, pp. 841-850
-
-
Weber, H.1
|