메뉴 건너뛰기




Volumn 11, Issue 3, 1998, Pages 535-547

Effective learning in recurrent max-min neural networks

Author keywords

Backpropagation; DFA extraction; Gradient descent; Grammatical inference; Learning; Max min functions; Neural network; Recurrent architecture

Indexed keywords

BACKPROPAGATION; COMPUTER ARCHITECTURE; CONVERGENCE OF NUMERICAL METHODS; FINITE AUTOMATA; FOURIER TRANSFORMS; FUNCTIONS; LEARNING SYSTEMS; MATHEMATICAL MODELS;

EID: 0032052449     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0893-6080(97)00151-2     Document Type: Article
Times cited : (7)

References (30)
  • 2
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Bengio Y., Simard P., Frasconi P. Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks. 5(2):1994;157-166.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 5
    • 0030586641 scopus 로고    scopus 로고
    • The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction
    • Casey M. The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction. Neural Computation. 8(6):1996;1135-1178.
    • (1996) Neural Computation , vol.8 , Issue.6 , pp. 1135-1178
    • Casey, M.1
  • 7
    • 0003130308 scopus 로고
    • A unified gradient-descent/clustering architecture for finite state machine induction
    • J. Cowan, G. Tesauro & J. Alspector (Eds.), San Mateo, CA: Morgan Kaufmann
    • Das, S. & Mozer, M. (1994). A unified gradient-descent/clustering architecture for finite state machine induction. In J. Cowan, G. Tesauro & J. Alspector (Eds.), Advances in neural information processing systems 6, pp. 19-26. San Mateo, CA: Morgan Kaufmann.
    • (1994) Advances in Neural Information Processing Systems , vol.6 , pp. 19-26
    • Das, S.1    Mozer, M.2
  • 8
    • 0003979694 scopus 로고
    • Learning the initial state of a second-order recurrent neural network during regular-language inference
    • Forcada M.L., Carrasco R.C. Learning the initial state of a second-order recurrent neural network during regular-language inference. Neural Computation. 7:1995;923-930.
    • (1995) Neural Computation , vol.7 , pp. 923-930
    • Forcada, M.L.1    Carrasco, R.C.2
  • 10
    • 0029560406 scopus 로고
    • Learning a class of large finite state machines with a recurrent neural network
    • Giles C.L., Horne B.G., Lin T. Learning a class of large finite state machines with a recurrent neural network. Neural Networks. 8(9):1995;1359-1365.
    • (1995) Neural Networks , vol.8 , Issue.9 , pp. 1359-1365
    • Giles, C.L.1    Horne, B.G.2    Lin, T.3
  • 11
    • 0028268852 scopus 로고
    • On the principles of fuzzy neural networks
    • Gupta M.N., Rao D.H. On the principles of fuzzy neural networks. Fuzzy Sets and Systems. 61:1994;1-18.
    • (1994) Fuzzy Sets and Systems , vol.61 , pp. 1-18
    • Gupta, M.N.1    Rao, D.H.2
  • 16
    • 0026995322 scopus 로고
    • Random DFAs can be approximately learned from sparse uniform examples
    • D. Haussler (Ed.), New York: ACM Press
    • Lang, K. (1992). Random DFAs can be approximately learned from sparse uniform examples. In D. Haussler (Ed.), Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory (pp. 45-52). New York: ACM Press.
    • (1992) Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory , pp. 45-52
    • Lang, K.1
  • 17
    • 0344729559 scopus 로고
    • Experimental comparison of the effect of order in recurrent neural networks
    • I. Guyon, and P.S.P. Wang (Eds.), Singapore: World Scientific
    • Miller, S. & Giles, C.L. (1993). Experimental comparison of the effect of order in recurrent neural networks. In I. Guyon, and P.S.P. Wang (Eds.), Advances in pattern recognition systems using neural network technologies (pp. 205-228). Singapore: World Scientific.
    • (1993) Advances in Pattern Recognition Systems Using Neural Network Technologies , pp. 205-228
    • Miller, S.1    Giles, C.L.2
  • 18
    • 0028192731 scopus 로고
    • Logical operation based fuzzy MLP for classification and rule generation
    • Mitra S., Pal S.K. Logical operation based fuzzy MLP for classification and rule generation. Neural Networks. 7(2):1994;353-373.
    • (1994) Neural Networks , vol.7 , Issue.2 , pp. 353-373
    • Mitra, S.1    Pal, S.K.2
  • 19
    • 0029880174 scopus 로고
    • Extraction of rules from discrete-time recurrent neural network
    • Omlin C.W., Giles C.L. Extraction of rules from discrete-time recurrent neural network. Neural Networks. 9(1):1995;41-52.
    • (1995) Neural Networks , vol.9 , Issue.1 , pp. 41-52
    • Omlin, C.W.1    Giles, C.L.2
  • 20
    • 0030286473 scopus 로고    scopus 로고
    • Constructing deterministic finite-state automata in recurrent neural networks
    • Omlin C.W., Giles C.L. Constructing deterministic finite-state automata in recurrent neural networks. Journal of the ACM. 43(6):1996;937-972.
    • (1996) Journal of the ACM , vol.43 , Issue.6 , pp. 937-972
    • Omlin, C.W.1    Giles, C.L.2
  • 21
    • 0029747022 scopus 로고    scopus 로고
    • Representation of fuzzy finite state automata in continuous recurrent neural networks
    • B.J. Shen (Ed.), Piscataway, NJ: IEEE Press
    • Omlin, C.W., Thornber, K.K. & Giles, C.L. (1996). Representation of fuzzy finite state automata in continuous recurrent neural networks. In B.J. Shen (Ed.), Proceedings of the IEEE International Conference on Neural networks (pp. 1023-1028). Piscataway, NJ: IEEE Press.
    • (1996) Proceedings of the IEEE International Conference on Neural Networks , pp. 1023-1028
    • Omlin, C.W.1    Thornber, K.K.2    Giles, C.L.3
  • 22
    • 0031996475 scopus 로고    scopus 로고
    • Fuzzy finite-state automata can be deterministically encoded into recurrent neural networks
    • to be published
    • Omlin C.W., Thornber K.K., & Giles C.L. (1998). Fuzzy finite-state automata can be deterministically encoded into recurrent neural networks. IEEE Transactions on Fuzzy Systems (to be published).
    • (1998) IEEE Transactions on Fuzzy Systems
    • Omlin, C.W.1    Thornber, K.K.2    Giles, C.L.3
  • 23
    • 0001202597 scopus 로고
    • Learning state space trajectories in recurrent neural networks
    • Pearlmutter B.A. Learning state space trajectories in recurrent neural networks. Neural Computation. 1:1989;263-269.
    • (1989) Neural Computation , vol.1 , pp. 263-269
    • Pearlmutter, B.A.1
  • 24
    • 0027593387 scopus 로고
    • Fuzzy neural networks and neurocomputations
    • Pedrycz W. Fuzzy neural networks and neurocomputations. Fuzzy Sets and Systems. 56:1993;1-28.
    • (1993) Fuzzy Sets and Systems , vol.56 , pp. 1-28
    • Pedrycz, W.1
  • 26
    • 0026927202 scopus 로고
    • Fuzzy min-max neural networks - Part 1: Classifications
    • Simpson P.K. Fuzzy min-max neural networks - Part 1: classifications. IEEE Transactions on Neural Networks. 3(5):1992;776-786.
    • (1992) IEEE Transactions on Neural Networks , vol.3 , Issue.5 , pp. 776-786
    • Simpson, P.K.1
  • 27
    • 0027542561 scopus 로고
    • Fuzzy min-max neural networks - Part 2: Clustering
    • Simpson P.K. Fuzzy min-max neural networks - Part 2: clustering. IEEE Transactions on Neural Networks. 4(1):1993;32-45.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , Issue.1 , pp. 32-45
    • Simpson, P.K.1
  • 29
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams R., Zipser D. A learning algorithm for continually running fully recurrent neural networks. Neural Computation. 1:1989;270-280.
    • (1989) Neural Computation , vol.1 , pp. 270-280
    • Williams, R.1    Zipser, D.2
  • 30
    • 0000003489 scopus 로고
    • Learning finite state machines with self-clustering recurrent networks
    • Zeng Z., Goodman R.M., Smyth P. Learning finite state machines with self-clustering recurrent networks. Neural Computation. 5:1993;976-990.
    • (1993) Neural Computation , vol.5 , pp. 976-990
    • Zeng, Z.1    Goodman, R.M.2    Smyth, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.