메뉴 건너뛰기




Volumn 30, Issue 3, 1992, Pages 482-490

Multispectral Classification of Landsat-Images Using Neural Networks

Author keywords

[No Author keywords available]

Indexed keywords

NEURAL NETWORKS - APPLICATIONS; REMOTE SENSING - MULTISPECTRAL SCANNERS;

EID: 0026868031     PISSN: 01962892     EISSN: 15580644     Source Type: Journal    
DOI: 10.1109/36.142926     Document Type: Article
Times cited : (359)

References (35)
  • 2
    • 84941532026 scopus 로고
    • Allgemeines Konzept einer Ablaufsteuerung fürein Bildverstehendes System
    • (OCG Schriftenreihe 56), Bernroider and Pinz, Eds. Oldenbourg
    • R. Bartl, A. Pinz, “Allgemeines Konzept einer Ablaufsteuerung fürein Bildverstehendes System,” in Image Acquisition and Real-Time Visualization (OCG Schriftenreihe 56), Bernroider and Pinz, Eds. Oldenbourg, 1990, pp. 51–75.
    • (1990) Image Acquisition and Real-Time Visualization , pp. 51-75
    • Bartl, R.1    Pinz, A.2
  • 3
    • 0025453627 scopus 로고
    • Neural network approaches versus statistical methods in classification of multisource remote sensing data
    • July
    • J. A. Benediktsson, P. H. Swain, and O. K. Ersoy, “Neural network approaches versus statistical methods in classification of multisource remote sensing data,” IEEE Trans. Geosci. Remote Sensing, vol. 28, no. 4, pp. 540–552, July 1990.
    • (1990) IEEE Trans. Geosci. Remote Sensing , vol.28 , Issue.4 , pp. 540-552
    • Benediktsson, J.A.1    Swain, P.H.2    Ersoy, O.K.3
  • 4
    • 84941526933 scopus 로고
    • A neural network tool as an additional feature for a computer vision system
    • (OCG Schriftenreihe 56), Bernroider and Pinz, Eds. Oldenbourg
    • H. Bischof and A. Pinz, “A neural network tool as an additional feature for a computer vision system,” in Image Acquisition and Real-Time Visualization (OCG Schriftenreihe 56), Bernroider and Pinz, Eds. Oldenbourg, 1990, pp. 37–50.
    • (1990) Image Acquisition and Real-Time Visualization , pp. 37-50
    • Bischof, H.1    Pinz, A.2
  • 5
    • 84941535689 scopus 로고
    • Verwendung von neuralen Netzwerken zur Klassifikation natürlicher Objekte am Beispiel der Baumerkennung aus Farb-Infrarot-Luftbildern
    • (Informatik Fachberichte 252), Dorffner, Ed. Berlin: Springer Verlag
    • H. Bischof and A. Pinz, “Verwendung von neuralen Netzwerken zur Klassifikation natü rlicher Objekte am Beispiel der Baumerkennung aus Farb-Infrarot-Luftbildern,” in Konnektionismus in Artificial Intelligence und Kognitionsforschung(Informatik Fachberichte 252), Dorffner, Ed. Berlin: Springer Verlag, 1990, pp. 112–120.
    • (1990) Konnektionismus in Artificial Intelligence und Kognitionsforschung , pp. 112-120
    • Bischof, H.1    Pinz, A.2
  • 6
    • 84941530696 scopus 로고
    • Al-methods in remote sensing: Neural networks and knowledge based systems
    • to appear in the, July
    • H. Bischof, R. Bartl, A. Pinz, and W. Schneider, “Al-methods in remote sensing: Neural networks and knowledge based systems,” to appear in the Proc. of the 11th EARSEL Symposion Graz, pp. 14–22, July 1991.
    • (1991) Proc. of the 11th EARSEL Symposion Graz , pp. 14-22
    • Bischof, H.1    Bartl, R.2    Pinz, A.3    Schneider, W.4
  • 7
    • 84941533568 scopus 로고
    • Visualization methods for neural networks
    • H. G. Ziegeler, Ed., Schriftenreihe der OGAI, Bd. 3
    • H. Bischof and A. Pinz, “Visualization methods for neural networks,” in Konnektionismus: Beitr ä ge aus Theorie und Praxis, H. G. Ziegeler, Ed., Schriftenreihe der OGAI, Bd. 3, 1–14, 1991.
    • (1991) Konnektionismus: Beiträge aus Theorie und Praxis , pp. 1-14
    • Bischof, H.1    Pinz, A.2
  • 8
    • 0024903852 scopus 로고
    • Applications of neural networks to terrain classification
    • S. E. Decatur, “Applications of neural networks to terrain classification,” in Proc. IJCNN'89 (Washington DC), vol. I, pp. 283–288, 1989.
    • (1989) Proc. IJCNN'89 (Washington DC) , vol.1 , pp. 283-288
    • Decatur, S.E.1
  • 10
    • 0023513717 scopus 로고
    • Learning, invariance, and generalization in high-order neural networks
    • L. C. Giles and T. Maxwell, “Learning, invariance, and generalization in high-order neural networks,” Appl. Opt., vol. 26, pp. 4972–4978, 1987.
    • (1987) Appl. Opt. , vol.26 , pp. 4972-4978
    • Giles, L.C.1    Maxwell, T.2
  • 11
    • 0024053288 scopus 로고
    • Learned classifications of sonar targets using a massively parallel network
    • P. Gorman and T. Sejnowski, “Learned classifications of sonar targets using a massively parallel network,” IEEE Trans. Acoust. Speech Signal Processing, vol. 36, pp. 1135–1140, 1988.
    • (1988) IEEE Trans. Acoust. Speech Signal Processing , vol.36 , pp. 1135-1140
    • Gorman, P.1    Sejnowski, T.2
  • 12
    • 0141868717 scopus 로고
    • Data representation in neural nets: an empirical study
    • Touretzky, Hinton, and Sejnowski, Eds. Morgan Kaufmann
    • P. J. Hancock, “Data representation in neural nets: an empirical study,” in Proc. of the 1988 Connectionist Models Summer School, San Mateo, Touretzky, Hinton, and Sejnowski, Eds. Morgan Kaufmann, 1988, pp. 11–20.
    • (1988) Proc. of the 1988 Connectionist Models Summer School, San Mateo , pp. 11-20
    • Hancock, P.J.1
  • 13
    • 0000999440 scopus 로고
    • Distributed representations
    • Rumelhart and McCelland, Eds., Cambridge, MA: MIT Press
    • G. E. Hinton, J. L. McCelland, and D. E. Rumelhart, “Distributed representations,” in Rumelhart and McCelland, Eds., Parallel Distributed Processing, Vol I. Cambridge, MA: MIT Press, 1986.
    • (1986) Parallel Distributed Processing , vol.1
    • Hinton, G.E.1    McCelland, J.L.2    Rumelhart, D.E.3
  • 14
    • 0024732792 scopus 로고
    • Connectionist learning procedures
    • G. Hinton, “Connectionist learning procedures,” Artificial Intelligence, vol. 40, pp. 185–234, 1989.
    • (1989) Artificial Intelligence , vol.40 , pp. 185-234
    • Hinton, G.1
  • 15
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Networks, vol. 2, pp. 359–366, 1989.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 16
    • 0002824144 scopus 로고
    • Learning processes in an assymetric threshold network
    • Bienenstock, Fogelman Souli, and Weisbruch, Eds. Berlin: Springer-Verlag
    • Y. Le Cun, “Learning processes in an assymetric threshold network,” in Disordered Systems and Biological Organization, Bienenstock, Fogelman Souli, and Weisbruch, Eds. Berlin: Springer-Verlag, 1986.
    • (1986) Disordered Systems and Biological Organization
    • Le Cun, Y.1
  • 18
    • 0023940601 scopus 로고
    • Network model of shape-from-shading: Neural function arises from both receptive and projective fields
    • S. R. Lehky and T. J. Sejnowski, “Network model of shape-from-shading: Neural function arises from both receptive and projective fields,” Nature, vol. 333, pp. 452-154, 1988.
    • (1988) Nature , vol.333 , pp. 154-452
    • Lehky, S.R.1    Sejnowski, T.J.2
  • 19
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • R. L. Lippmann, “An introduction to computing with neural nets,” IEEE ASSP Mag., vol. 4, pp. 4–22, 1987.
    • (1987) IEEE ASSP Mag. , vol.4 , pp. 4-22
    • Lippmann, R.L.1
  • 20
    • 0024933812 scopus 로고
    • Multispectral image-processing with a three-layer backpropagation network
    • G. E. McCellan, R. N. DeWitt, L. N. Matheson, and G. O. Moe, “Multispectral image-processing with a three-layer backpropagation network,” in Proc. IJCNN'89 (Washington DC), Vol. I, pp. 151–153, 1989.
    • (1989) Proc. IJCNN'89 (Washington DC) , vol.1 , pp. 151-153
    • McCellan, G.E.1    DeWitt, R.N.2    Matheson, L.N.3    Moe, G.O.4
  • 21
    • 0003008654 scopus 로고
    • The appeal of parallel distributed processing
    • Rumelhart and McCelland, Eds. Cambridge, MA: MIT Press
    • J. L. McCelland, D. E. Rumelhart, and G. E. Hinton, “The appeal of parallel distributed processing,” in Parallel Distributed Processing, Vol. I, Rumelhart and McCelland, Eds. Cambridge, MA: MIT Press, 1986.
    • (1986) Parallel Distributed Processing , vol.1
    • McCelland, J.L.1    Rumelhart, D.E.2    Hinton, G.E.3
  • 23
    • 0004225001 scopus 로고
    • Learning-logic
    • Tech. Rep. TR-47, Sloan School of Management, MIT, Cambridge, MA
    • D. B. Parker, “Learning-logic,” Tech. Rep. TR-47, Sloan School of Management, MIT, Cambridge, MA 1985.
    • (1985)
    • Parker, D.B.1
  • 24
    • 0025535902 scopus 로고
    • Constructing a neural network for the interpretation of the species of trees in aerial photographs
    • IEEE Computer Society Press
    • A. Pinz and H. Bischof, “Constructing a neural network for the interpretation of the species of trees in aerial photographs,” in Proc. 10. ICPR Atlantic City, IEEE Computer Society Press, pp. 755–757, 1990.
    • (1990) Proc. 10. ICPR Atlantic City , pp. 755-757
    • Pinz, A.1    Bischof, H.2
  • 25
    • 84941535690 scopus 로고
    • The IVF Weight-Visualization Diagrams (WV-Diagrams)
    • IVF Rep., Insitute of Surveying and Remote Sensing, Univ. of Bodenkultur Vienna, July
    • A. Pinz and H. Bischof, “The IVF Weight-Visualization Diagrams (WV-Diagrams),” IVF Rep., Insitute of Surveying and Remote Sensing, Univ. of Bodenkultur, Vienna, July 1990.
    • (1990)
    • Pinz, A.1    Bischof, H.2
  • 26
    • 0023803244 scopus 로고
    • Predicting the secondary structure of globular proteins using neural network models
    • N. Qian and T. J. Sejnowski, “Predicting the secondary structure of globular proteins using neural network models,” J. Mol. Biol., vol. 202, pp. 865–884, 1988.
    • (1988) J. Mol. Biol. , vol.202 , pp. 865-884
    • Qian, N.1    Sejnowski, T.J.2
  • 27
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • F. Rosenblatt, “The perceptron: A probabilistic model for information storage and organization in the brain,” Psychological Review, vol. 65, pp. 386–408, 1958.
    • (1958) Psychological Review , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 28
    • 0025670892 scopus 로고
    • The multilayer perceptron as an approximation to a Bayes optimal discriminant function
    • D. W. Ruck, S. K. Rogers, M. Kabrisky, M. E. Oxely, and B. W. Suter, “The multilayer perceptron as an approximation to a Bayes optimal discriminant function,” IEEE Trans. Neural Networks, vol. 1, pp. 296–298, 1990.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 296-298
    • Ruck, D.W.1    Rogers, S.K.2    Kabrisky, M.3    Oxely, M.E.4    Suter, B.W.5
  • 29
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature, vol. 323, pp. 533–536, 1986.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 30
    • 0004081889 scopus 로고
    • NETtalk: A parallel network that learns to read aloud
    • Tech. Rep. JHU/EECS-86/01, John Hopkins University, Baltimore, MD
    • T. J. Sejnowski and C. R. Rosenberg, “NETtalk: A parallel network that learns to read aloud,” Tech. Rep. JHU/EECS-86/01, John Hopkins University, Baltimore, MD, 1986.
    • (1986)
    • Sejnowski, T.J.1    Rosenberg, C.R.2
  • 31
    • 0024702037 scopus 로고
    • A parallel network that learns to play backgammon
    • G. Tesauro and T. J. Sejnowski, “A parallel network that learns to play backgammon,” Artificial Intelligence, vol. 39, pp. 357–390, 1989.
    • (1989) Artificial Intelligence , vol.39 , pp. 357-390
    • Tesauro, G.1    Sejnowski, T.J.2
  • 32
    • 0025597157 scopus 로고
    • Neural network classification: A Bayesian interpretation
    • E. A. Wan, “Neural network classification: A Bayesian interpretation,” IEEE Trans. Neural Networks vol. 1, pp. 303–305, 1990.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 303-305
    • Wan, E.A.1
  • 33
    • 0003529238 scopus 로고
    • Beyond regression: New tools for prediction and analysis in the behavioral sciences
    • Ph. D. thesis, Harvard University, Cambridge, MA
    • P. J. Werbos, “Beyond regression: New tools for prediction and analysis in the behavioral sciences,” Ph. D. thesis, Harvard University, Cambridge, MA, 1974.
    • (1974)
    • Werbos, P.J.1
  • 34
    • 0025506080 scopus 로고
    • Maximum a posteriori decision and evaluation of class probabilities by Boltzmann perceptron classifiers
    • E. Yair and A. Gersho, “Maximum a posteriori decision and evaluation of class probabilities by Boltzmann perceptron classifiers,” Proc. IEEE, vol. 78, no. 10, 1990.
    • (1990) Proc. IEEE , vol.78 , Issue.10
    • Yair, E.1    Gersho, A.2
  • 35
    • 0025227507 scopus 로고
    • Iterative improvement of Gaussian classifier
    • H-C. Yau and M. T. Manary, “Iterative improvement of Gaussian classifier,” Neural Network, vol. 3, pp. 437-143, 1990.
    • (1990) Neural Network , vol.3 , pp. 143-437
    • Yau, H.-C.1    Manary, M.T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.