메뉴 건너뛰기




Volumn 32, Issue 1, 1994, Pages 100-109

Application of Neural Networks to Radar Image Classification

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); IMAGE ANALYSIS; ITERATIVE METHODS; NEURAL NETWORKS; POLARIMETERS; REMOTE SENSING; SYNTHETIC APERTURE RADAR;

EID: 0027963979     PISSN: 01962892     EISSN: 15580644     Source Type: Journal    
DOI: 10.1109/36.285193     Document Type: Article
Times cited : (124)

References (18)
  • 3
    • 0024479436 scopus 로고
    • Unsupervised classification of scattering behavior using radar polarimetry data
    • J. J. van Zyl, “Unsupervised classification of scattering behavior using radar polarimetry data,” IEEE Trans. Geosci. Remote Sens., vol. 27, pp. 36–45, 1989.
    • (1989) IEEE Trans. Geosci. Remote Sens. , vol.27 , pp. 36-45
    • van Zyl, J.J.1
  • 4
    • 0024813584 scopus 로고
    • Classification of earth terrain using polarimetric synthetic aperture radar images
    • June
    • H. H. Lim, A.A. Swartz, H.A. Yueh, J.A. Kong, R.T. Shin, J. J. van Zyl, “Classification of earth terrain using polarimetric synthetic aperture radar images,” J. Geophys. Res., vol. 94, no. B6, pp. 7049–7057, June 1989.
    • (1989) J. Geophys. Res. , vol.94 , Issue.6 B , pp. 7049-7057
    • Lim, H.H.1    Swartz, A.A.2    Yueh, H.A.3    Kong, J.A.4    Shin, R.T.5    van Zyl, J.J.6
  • 5
    • 0026678254 scopus 로고
    • Classification of multispectral remote sensing data using a back-propagation neural network
    • Jan
    • P. D. Herman and N. Khazenie, “Classification of multispectral remote sensing data using a back-propagation neural network,” IEEE Trans. Geosci. Remote Sens., vol. 30, pp. 81–88, Jan. 1992.
    • (1992) IEEE Trans. Geosci. Remote Sens. , vol.30 , pp. 81-88
    • Herman, P.D.1    Khazenie, N.2
  • 6
    • 0025453627 scopus 로고
    • Neural network approaches versus statistical methods in classification of multisource remote sensing data
    • July
    • J. A. Benediktsson, P. H. Swain, and O. K. Ersoy, “Neural network approaches versus statistical methods in classification of multisource remote sensing data,” IEEE Trans. Geosci. Remote Sens., vol. 28, pp. 540–552, July 1990.
    • (1990) IEEE Trans. Geosci. Remote Sens. , vol.28 , pp. 540-552
    • Benediktsson, J.A.1    Swain, P.H.2    Ersoy, O.K.3
  • 7
    • 9444266556 scopus 로고
    • Applications of neural networks to terrain classification
    • Sci., MIT, Cambridge, MA, June
    • S. E. Decatur, “Applications of neural networks to terrain classification,” M.S. thesis, Dep. Elec. Eng. Comput. Sci., MIT, Cambridge, MA, June 1989.
    • (1989) M.S. thesis Dep. Elec. Eng. Comput
    • Decatur, S.E.1
  • 8
    • 70350174366 scopus 로고
    • A neural network method for high range resolution target classification
    • New York: Elsevier
    • R. G. Atkins, R. T. Shin, and J. A. Kong, “A neural network method for high range resolution target classification,” in Progress in Electromagnetics magnetics Research, Vol. 4. New York: Elsevier, 1990.
    • (1990) Progress in Electromagnetics magnetics Research , vol.4
    • Atkins, R.G.1    Shin, R.T.2    Kong, J.A.3
  • 9
    • 85086295901 scopus 로고
    • Classifying impulse response radar waveforms using principal components analysis and neural networks
    • San Diego, CA, June 17-21
    • G. Vrckovnik, T. Chung, and C. R. Carter, “Classifying impulse response radar waveforms using principal components analysis and neural networks,” in Proc. Int. Joint Conf Neural Networks, San Diego, CA, June 17–21, 1990, pp. 45–50.
    • (1990) Proc. Int. Joint Conf Neural Networks , pp. 45-50
    • Vrckovnik, G.1    Chung, T.2    Carter, C.R.3
  • 10
    • 0004606980 scopus 로고
    • ART 1.5--A simplified adaptive resonance network for classifying low-dimensional analog data
    • Washington, DC, Jan. 15–19
    • D. S. Levine and P. Andrew Penz, “ART 1.5--A simplified adaptive resonance network for classifying low-dimensional analog data,” in Proc. Int. Joint Conf. Neural Networks, Washington, DC, Jan. 15–19, 1990, pp. 639–642.
    • (1990) Proc. Int. Joint Conf. Neural Networks , pp. 639-642
    • Levine, D.S.1    Andrew Penz, P.2
  • 11
    • 0001204674 scopus 로고
    • Identification of terrain cover using the optimum polarimetric classifier
    • J. A. Kong, A.A. Swartz, H.A. Yueh, L.M. Novak and R. T. Shin, “Identification of terrain cover using the optimum polarimetric classifier,” J. Eiectromagn. Waves Appl., vol. 2, no. 2, pp. 171–194, 1988
    • (1988) J. Eiectromagn. Waves Appl. , vol.2 , Issue.2 , pp. 171-194
    • Kong, J.A.1    Swartz, A.A.2    Yueh, H.A.3    Novak, L.M.4    Shin, R.T.5
  • 12
    • 0024258778 scopus 로고
    • Bayes classification of terrain cover using normalized polarimetric data
    • Dec
    • H. A. Yueh, A.A. Swartz, J.A. Kong, R.T. Shin and L. M. Novak, “Bayes classification of terrain cover using normalized polarimetric data,” J. Geophys. Res., vol. 93, no. B12, pp. 15261–15267, Dec. 1988.
    • (1988) J. Geophys. Res. , vol.93 , Issue.12 B , pp. 15261-15267
    • Yueh, H.A.1    Swartz, A.A.2    Kong, J.A.3    Shin, R.T.4    Novak, L.M.5
  • 15
  • 16
    • 0023981451 scopus 로고
    • The ART of adaptive pattern recognition by self-organizing neural network
    • Mar
    • G. A. Carpenter and S. A. Grossberg, “The ART of adaptive pattern recognition by self-organizing neural network,” IEEE Comput., vol. 21, pp. 77–88, Mar. 1988.
    • (1988) IEEE Comput. , vol.21 , pp. 77-88
    • Carpenter, G.A.1    Grossberg, S.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.