메뉴 건너뛰기




Volumn 1, Issue 3, 1997, Pages 300-308

Nuclear histone acetylases and deacetylases and transcriptional regulation: HATs off to HDACs

Author keywords

[No Author keywords available]

Indexed keywords

ACYLTRANSFERASE; ENZYME INHIBITOR; HISTONE ACETYLTRANSFERASE; HISTONE DEACETYLASE; NUCLEAR PROTEIN; REPRESSOR PROTEIN; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 0031244521     PISSN: 13675931     EISSN: None     Source Type: Journal    
DOI: 10.1016/S1367-5931(97)80066-X     Document Type: Article
Times cited : (348)

References (60)
  • 1
    • 0028608018 scopus 로고
    • Histone acetylation: Facts and questions
    • Loidl P: Histone acetylation: facts and questions. Chromosoma 1994, 103:441-449.
    • (1994) Chromosoma , vol.103 , pp. 441-449
    • Loidl, P.1
  • 2
    • 0027525056 scopus 로고
    • Decoding the nucleosome
    • Turner BM: Decoding the nucleosome. Cell 1993, 75:5-8.
    • (1993) Cell , vol.75 , pp. 5-8
    • Turner, B.M.1
  • 3
    • 0029869172 scopus 로고    scopus 로고
    • Histone deacetylase: A regulator of transcription
    • Wolffe AP: Histone deacetylase: a regulator of transcription. Science 1996, 272:371-372.
    • (1996) Science , vol.272 , pp. 371-372
    • Wolffe, A.P.1
  • 4
    • 0030916336 scopus 로고    scopus 로고
    • What's up and down with histone deacetylation and transcription
    • Pazin MJ, Kadonaga JT: What's up and down with histone deacetylation and transcription. Cell 1997, 89:325-328. A concise review of recent findings in the field of histone acetylation that provides a cautious analysis of the available data and how the data support current models. The authors stress the potential dual role of histone acetylation in both repression and activation of transcription. Conclusive determination of these roles is hampered by the many indirect effects that can influence transcription.
    • (1997) Cell , vol.89 , pp. 325-328
    • Pazin, M.J.1    Kadonaga, J.T.2
  • 5
    • 0030922545 scopus 로고    scopus 로고
    • Sinful repression
    • Wolffe AP: Sinful repression. Nature 1997, 387:16-17.
    • (1997) Nature , vol.387 , pp. 16-17
    • Wolffe, A.P.1
  • 6
    • 0027465862 scopus 로고
    • A positive role for histone acetylation in transcription factor access to nucleosomal DNA
    • Lee DY, Hayes JJ, Pruss D, Wolffe AP: A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 1993, 72:73-84.
    • (1993) Cell , vol.72 , pp. 73-84
    • Lee, D.Y.1    Hayes, J.J.2    Pruss, D.3    Wolffe, A.P.4
  • 7
    • 0029985730 scopus 로고    scopus 로고
    • Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro
    • Vettese-Dadey M, Grant PA, Hebbes TR, Crane- Robinson C, Allis CD, Workman JL: Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J 1996, 15:2508-2518.
    • (1996) EMBO J , vol.15 , pp. 2508-2518
    • Vettese-Dadey, M.1    Grant, P.A.2    Hebbes, T.R.3    Robinson, C.4    Allis, C.D.5    Workman, J.L.6
  • 8
    • 0029953722 scopus 로고    scopus 로고
    • Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern
    • Braunstein M, Sobel RE, Allis CD, Turner BM, Broach JR: Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol Cell Biol 1996, 16:4349-4356.
    • (1996) Mol Cell Biol , vol.16 , pp. 4349-4356
    • Braunstein, M.1    Sobel, R.E.2    Allis, C.D.3    Turner, B.M.4    Broach, J.R.5
  • 9
    • 0026566417 scopus 로고
    • Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei
    • Turner BM, Birley AJ, Lavender J: Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 1992, 69:375-384.
    • (1992) Cell , vol.69 , pp. 375-384
    • Turner, B.M.1    Birley, A.J.2    Lavender, J.3
  • 10
    • 0028009294 scopus 로고
    • Acetylated histone H4 on the male X chromosome is associated with dosage compensation in Drosophila
    • Bone RJ, Lavender J, Rictiman R, Palmer MJ, Turner BM, Kuroda MI: Acetylated histone H4 on the male X chromosome is associated with dosage compensation in Drosophila. Genes Dev 1994, 8:96-104.
    • (1994) Genes Dev , vol.8 , pp. 96-104
    • Bone, R.J.1    Lavender, J.2    Rictiman, R.3    Palmer, M.J.4    Turner, B.M.5    Kuroda, M.I.6
  • 11
    • 0027183088 scopus 로고
    • The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression
    • Jeppesen P, Turner BM: The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 1993, 74:281-289.
    • (1993) Cell , vol.74 , pp. 281-289
    • Jeppesen, P.1    Turner, B.M.2
  • 12
    • 0029119093 scopus 로고
    • Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation-dependent but transcription-independent manner
    • Turner BM, O'Neill LP: Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation-dependent but transcription-independent manner. EMBO J 1995, 14:3946-3957.
    • (1995) EMBO J , vol.14 , pp. 3946-3957
    • Turner, B.M.1    O'Neill, L.P.2
  • 13
    • 0025736044 scopus 로고
    • Yeast histone H4 N-terminal sequence is required for promoter activation in vivo
    • Durrin LK, Mann RK, Kayne PS, Grunstein M: Yeast histone H4 N-terminal sequence is required for promoter activation in vivo. Cell 1991, 65:1023-1031.
    • (1991) Cell , vol.65 , pp. 1023-1031
    • Durrin, L.K.1    Mann, R.K.2    Kayne, P.S.3    Grunstein, M.4
  • 14
    • 0026697659 scopus 로고
    • Histone H3 N-terminal mutations allow hyperactivation of the yeast GAL1 gene in vivo
    • Mann RK, Grunstein M: Histone H3 N-terminal mutations allow hyperactivation of the yeast GAL1 gene in vivo. EMBO J 1992, 11:3297-3306.
    • (1992) EMBO J , vol.11 , pp. 3297-3306
    • Mann, R.K.1    Grunstein, M.2
  • 15
    • 0028885077 scopus 로고
    • Identification of a gene encoding a yeast histone H4 acetyltransferase
    • Kleff S, Andrulis ED, Anderson CW, Sternglanz R: Identification of a gene encoding a yeast histone H4 acetyltransferase. J Biol Chem 1995, 270:24674-24677.
    • (1995) J Biol Chem , vol.270 , pp. 24674-24677
    • Kleff, S.1    Andrulis, E.D.2    Anderson, C.W.3    Sternglanz, R.4
  • 16
    • 0030271392 scopus 로고    scopus 로고
    • The major cytoplasmic histone acetyltransferase in yeast: Links to chromatin replication and histone metabolism
    • Parthun MR, Windom J, Gottschling DE: The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 1996, 87:85-94.
    • (1996) Cell , vol.87 , pp. 85-94
    • Parthun, M.R.1    Windom, J.2    Gottschling, D.E.3
  • 17
    • 0029984469 scopus 로고    scopus 로고
    • Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation
    • Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD: Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 1996, 84:843-851. The researchers cleverly used a modified histone-containing polyacrylamide gel to identify, and clone the gene encoding, the first nuclear histone acetyltransferase (HAT). The amino acid sequence of Tetrahymena HATA is significantly homologous to that of the yeast transcriptional coactivator GCN5, thereby linking histone acetylation to gene activation and providing critical sequence information necessary for the identification of hGCN5 and PCAF as HATs.
    • (1996) Cell , vol.84 , pp. 843-851
    • Brownell, J.E.1    Zhou, J.2    Ranalli, T.3    Kobayashi, R.4    Edmondson, D.G.5    Roth, S.Y.6    Allis, C.D.7
  • 18
    • 0029932598 scopus 로고    scopus 로고
    • A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p
    • Taunton J, Hassig CA, Schreiber SL: A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 1996, 272:408-411. The elegant affinity purification of the first histone deacetylase (HDAC) (HDAC1, formerly HD1) is described. The authors used a modified form of the HDAC inhibitor trapoxin (K-Trap) as an affinity reagent. Edman sequencing of two purified polypeptides indicated that one of these proteins was 60% identical to the yeast transcriptional regulator Rpd3p, and thus provided a link between histone deacetylation and transcriptional regulation. The other protein was identified as RbAp48, a protein which interacts with the retinoblastoma (Rb) protein and contains WD (single-letter amino acid code) repeats. This protein, or its orthologs, has now been shown to be a component of distinct chromatin modifying complexes including CAF-1, mSin3, NURF, and Hat1p.
    • (1996) Science , vol.272 , pp. 408-411
    • Taunton, J.1    Hassig, C.A.2    Schreiber, S.L.3
  • 19
    • 0029856225 scopus 로고    scopus 로고
    • HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription
    • Rundlett SE, Carmen AA, Kobayashi R, Bavykin S, Turner BM, Grunstein M: HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc Natl Acad Sci USA 1996, 93:14503-14508. The authors skillfully combine biochemical and genetic techniques to demonstrate that there are two different histone deacetylase (HDAC) complexes in yeast. These findings confirm the prediction that Rpd3p is a yeast histone deacetylase, both by demonstrating that immunoprecipitates of the Rpd3p complex possess histone deacetylase activity in vitro, and by showing increased histone acetylation levels in rpd3 null mutants strains. The authors also examine the effect of HDAC deletions on transcription and telomeric silencing.
    • (1996) Proc Natl Acad Sci USA , vol.93 , pp. 14503-14508
    • Rundlett, S.E.1    Carmen, A.A.2    Kobayashi, R.3    Bavykin, S.4    Turner, B.M.5    Grunstein, M.6
  • 20
    • 0030271391 scopus 로고    scopus 로고
    • Histone acetylation and chromatin assembly
    • Roth SY, Allis CD: Histone acetylation and chromatin assembly. Cell 1996, 87:5-8.
    • (1996) Cell , vol.87 , pp. 5-8
    • Roth, S.Y.1    Allis, C.D.2
  • 21
    • 0029925512 scopus 로고    scopus 로고
    • Special HATs for special occasions: Linking histone acetylation to chromatin assembly and gene activation
    • Brownell JE, Allis CD: Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Curr Opin Genet Dev 1996, 6:176-184.
    • (1996) Curr Opin Genet Dev , vol.6 , pp. 176-184
    • Brownell, J.E.1    Allis, C.D.2
  • 23
    • 0029932309 scopus 로고    scopus 로고
    • Structural and functional analysis of yeast putative adaptors
    • Candau R, Berger SL: Structural and functional analysis of yeast putative adaptors. J Biol Chem 1996, 271:5237-5245.
    • (1996) J Biol Chem , vol.271 , pp. 5237-5245
    • Candau, R.1    Berger, S.L.2
  • 24
    • 0029665857 scopus 로고    scopus 로고
    • A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A
    • Yang X-J, Ogryzko VV, Nishikawa J, Howard BH, Nakatani Y: A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 1996, 382:319-324. The authors identified two mammalian histone acetyltransferases (HATs), hGcn5 and PCAF, and describe an association of PCAF with the previously identified coactivator p300/CBP. A functional interaction between HATs and coactivator proteins is suggested that would facilitate targeted histone acetylation at specific sites on DNA. Furthermore, a potential physiological role is suggested for E1A in viral-induced oncogenesis. Although the precise function of PCAF in p300-mediated transcriptional regulation is at present ambiguous, overexpression of PCAF results in cell cycle arrest, consistent with effects seen in mammalian cells when using deacetylase inhibitors.
    • (1996) Nature , vol.382 , pp. 319-324
    • Yang, X.-J.1    Ogryzko, V.V.2    Nishikawa, J.3    Howard, B.H.4    Nakatani, Y.5
  • 25
    • 0030570961 scopus 로고    scopus 로고
    • A growing coactivator network
    • Janknecht R, Hunter T: A growing coactivator network. Nature 1996, 383:22-23.
    • (1996) Nature , vol.383 , pp. 22-23
    • Janknecht, R.1    Hunter, T.2
  • 26
    • 0030606239 scopus 로고    scopus 로고
    • The transcriptional activators p300 and CBP are histone acetylases
    • Ogryzko W, Schiltz RL, Russanova V, Howard BH, Nakatani Y: The transcriptional activators p300 and CBP are histone acetylases. Cell 1996, 87:953-959.
    • (1996) Cell , vol.87 , pp. 953-959
    • Ogryzko, W.1    Schiltz, R.L.2    Russanova, V.3    Howard, B.H.4    Nakatani, Y.5
  • 28
    • 0019877270 scopus 로고
    • Studies of acetylation and deacetylation in high mobility group proteins
    • Sterner R, Vidali G, Allfrey VG: Studies of acetylation and deacetylation in high mobility group proteins. J Biol Chem 1981, 256:8892-8895.
    • (1981) J Biol Chem , vol.256 , pp. 8892-8895
    • Sterner, R.1    Vidali, G.2    Allfrey, V.G.3
  • 29
    • 0028847955 scopus 로고
    • Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4
    • Sobel RE, Cook RG, Perry CA, Annunziato AT, Allis CD: Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc Natl Acad Sci USA 1995, 92:1237-1241.
    • (1995) Proc Natl Acad Sci USA , vol.92 , pp. 1237-1241
    • Sobel, R.E.1    Cook, R.G.2    Perry, C.A.3    Annunziato, A.T.4    Allis, C.D.5
  • 30
    • 0030272047 scopus 로고    scopus 로고
    • Nucleosome assembly by CAF-1 and acetylated histones H3/H4
    • Verreault A, Kaufmann PD, Kobayashi R, Stillman B: Nucleosome assembly by CAF-1 and acetylated histones H3/H4. Cell 1996, 87:95-104.
    • (1996) Cell , vol.87 , pp. 95-104
    • Verreault, A.1    Kaufmann, P.D.2    Kobayashi, R.3    Stillman, B.4
  • 31
    • 0017767153 scopus 로고
    • N-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells
    • Riggs MG, Whittaker RG, Neumann JR, Ingram VR: n-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells. Nature 1977, 268:462-464.
    • (1977) Nature , vol.268 , pp. 462-464
    • Riggs, M.G.1    Whittaker, R.G.2    Neumann, J.R.3    Ingram, V.R.4
  • 32
    • 0029294663 scopus 로고
    • Trichostatin a and trapoxin: Novel chemical probes for the role of histone acetylation in chromatin structure and function
    • Yoshida M, Horinouchi S, Beppu T: Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. Bioessays 1995, 17:423-430.
    • (1995) Bioessays , vol.17 , pp. 423-430
    • Yoshida, M.1    Horinouchi, S.2    Beppu, T.3
  • 35
    • 0023065338 scopus 로고
    • Analogues of the cytostatic and antimitogenic agents chlamydocin and HC-toxin: Synthesis and biological activity of chloromethyl ketone and diazomethyl ketone functionalized cyclic tetrapeptides
    • Shute RE, Dunlap B, Rich DJ: Analogues of the cytostatic and antimitogenic agents chlamydocin and HC-toxin: synthesis and biological activity of chloromethyl ketone and diazomethyl ketone functionalized cyclic tetrapeptides. J Med Chem 1987, 30:71-78.
    • (1987) J Med Chem , vol.30 , pp. 71-78
    • Shute, R.E.1    Dunlap, B.2    Rich, D.J.3
  • 36
    • 0024996768 scopus 로고
    • Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A
    • Yoshida M, Kajima M, Akita M, Beppu T: Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 1990, 265:17174-17179.
    • (1990) J Biol Chem , vol.265 , pp. 17174-17179
    • Yoshida, M.1    Kajima, M.2    Akita, M.3    Beppu, T.4
  • 37
    • 0027378351 scopus 로고
    • Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase
    • Kijima M, Yoshida M, Sugita K, Horinouchi S, Beppu T: Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J Biol Chem 1993, 268:22429-22435.
    • (1993) J Biol Chem , vol.268 , pp. 22429-22435
    • Kijima, M.1    Yoshida, M.2    Sugita, K.3    Horinouchi, S.4    Beppu, T.5
  • 38
    • 0029411482 scopus 로고
    • Inhibition of maize histone deacetylase by HC-toxin, the host-selective toxin of Cochliobolus carbonum
    • Brosch G, Ransom R, Lechner T, Walton JD, Loidl P: Inhibition of maize histone deacetylase by HC-toxin, the host-selective toxin of Cochliobolus carbonum. Plant Cell 1995, 7:1941-1950.
    • (1995) Plant Cell , vol.7 , pp. 1941-1950
    • Brosch, G.1    Ransom, R.2    Lechner, T.3    Walton, J.D.4    Loidl, P.5
  • 39
    • 0023689244 scopus 로고
    • Reversible arrest of proliferation of rat 3Y1 fibroblasts in both the G1 and G2 phases by trichostatin A
    • Yoshida M, Beppu T: Reversible arrest of proliferation of rat 3Y1 fibroblasts in both the G1 and G2 phases by trichostatin A. Exp Cell Res 1988, 177:122-131.
    • (1988) Exp Cell Res , vol.177 , pp. 122-131
    • Yoshida, M.1    Beppu, T.2
  • 40
    • 0026509298 scopus 로고
    • A novel tetracyclic peptide, trapoxin, induces phenotypic change from transformed to normal in sis-oncogene-transformed NIH3T3 cells
    • Yoshida H, Sugita K: A novel tetracyclic peptide, trapoxin, induces phenotypic change from transformed to normal in sis-oncogene-transformed NIH3T3 cells. Jpn J Cancer Res 1992, 83:324-328.
    • (1992) Jpn J Cancer Res , vol.83 , pp. 324-328
    • Yoshida, H.1    Sugita, K.2
  • 41
    • 0026060619 scopus 로고
    • RPD3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyces cerevisiae
    • Vidai M, Gaber RF: RPD3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyces cerevisiae. Mol Cell Biol 1991, 11:6317-6327.
    • (1991) Mol Cell Biol , vol.11 , pp. 6317-6327
    • Vidai, M.1    Gaber, R.F.2
  • 42
    • 0027407636 scopus 로고
    • Bipartite structure of an early meiotic upstream activation sequence from Saccharomyces cerevisiae
    • Bowdish KS, Mitchell AP: Bipartite structure of an early meiotic upstream activation sequence from Saccharomyces cerevisiae. Mol Cell Biol 1993, 13:2172-2181.
    • (1993) Mol Cell Biol , vol.13 , pp. 2172-2181
    • Bowdish, K.S.1    Mitchell, A.P.2
  • 43
    • 0027490155 scopus 로고
    • The centromere and promoter factor, 1, CPF1, of Saccharomyces cerevisiae modulates gene activity through a family of factors including SPT21, RPD1 (SIN3), RPD3 and CCR4
    • McKenzie EA, Kent NA, Dowell SJ, Moreno F, Bird LE, Mellor J: The centromere and promoter factor, 1, CPF1, of Saccharomyces cerevisiae modulates gene activity through a family of factors including SPT21, RPD1 (SIN3), RPD3 and CCR4. Mol Gen Genet 1993, 240:374-386.
    • (1993) Mol Gen Genet , vol.240 , pp. 374-386
    • McKenzie, E.A.1    Kent, N.A.2    Dowell, S.J.3    Moreno, F.4    Bird, L.E.5    Mellor, J.6
  • 44
    • 0028297156 scopus 로고
    • Epi stasis analysis of suppressor mutations that allow HO expression in the absence of the yeast SWI5 transcriptional activator
    • Stillman DJ, Dorland S, Yu Y: Epi stasis analysis of suppressor mutations that allow HO expression in the absence of the yeast SWI5 transcriptional activator. Genetics 1994, 136:781-788.
    • (1994) Genetics , vol.136 , pp. 781-788
    • Stillman, D.J.1    Dorland, S.2    Yu, Y.3
  • 45
    • 0343924289 scopus 로고    scopus 로고
    • Repression by Ume6p involves recruitment of a complex containing Sin3p corepressor and Rpd3p histone deacetylase to target promoters
    • Kadosh D, Struhl K: Repression by Ume6p involves recruitment of a complex containing Sin3p corepressor and Rpd3p histone deacetylase to target promoters. Cell 1997, 89:365-371.
    • (1997) Cell , vol.89 , pp. 365-371
    • Kadosh, D.1    Struhl, K.2
  • 46
    • 0028905563 scopus 로고
    • Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3
    • Ayer DE, Lawrence QA, Eisenman RN: Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 1995, 80:767-776.
    • (1995) Cell , vol.80 , pp. 767-776
    • Ayer, D.E.1    Lawrence, Q.A.2    Eisenman, R.N.3
  • 47
    • 0028940364 scopus 로고
    • An amino-terminal domain of Mxi1 mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3
    • Schreiber-Agus N, Chin L, Chen K, Torres R, Rao G, Guida P, Skoultchi Al, DePinho RA: An amino-terminal domain of Mxi1 mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3. Cell 1995, 80:777-786.
    • (1995) Cell , vol.80 , pp. 777-786
    • Schreiber-Agus, N.1    Chin, L.2    Chen, K.3    Torres, R.4    Rao, G.5    Guida, P.6    Skoultchi, Al.7    DePinho, R.A.8
  • 48
    • 0031007189 scopus 로고    scopus 로고
    • Histone deacetylase is required for full transcriptional repression by mSin3A
    • Hassig CA, Fleischer TC, Billin AN, Schreiber SL, Ayer DE: Histone deacetylase is required for full transcriptional repression by mSin3A. Cell 1997, 89:341-347.
    • (1997) Cell , vol.89 , pp. 341-347
    • Hassig, C.A.1    Fleischer, T.C.2    Billin, A.N.3    Schreiber, S.L.4    Ayer, D.E.5
  • 49
    • 0030969516 scopus 로고    scopus 로고
    • Histone deacetylases associated with the mSin3 corepressor mediate Mad:Max transcriptional repression
    • Laherty CD, Yang W-M, Sun J-M, Davie JR, Seto E, Eisenman RN: Histone deacetylases associated with the mSin3 corepressor mediate Mad:Max transcriptional repression. Cell 1997, 89:349-356. The authors describe a functional in vivo association between mSin3A (mammalian Sin3 related to yeast transcriptional regulator Sin3p) and histone deacetylase (HDAC1) and/or HDAC2. The HDAC interaction domain (HID) was identified as a region between PAH3 (putative paired amphipathic helix domain) and PAH4 of mSin3A. These mapping experiments demonstrate a correlation between mSin3A-HDAC binding and mSin3A-associated deacetylase activity, suggesting that mSin3A is unlikely to harbor intrinsic deacetylase activity. Transcriptional repression by the HID is demonstrated on a heterologous reporter gene. Interestingly, an mSin3A mutant lacking the HID still represses transcription in the same assay, which suggests that repression of transiently transfected reporter constructs is not necessarily dependent on HDAC activity. This indicates that there may be other mechanisms of repression by mSin3, perhaps mediated by N-CoR or SMRT (silencing mediator for retinoid and thyroid receptors). This also suggests that HDACs may function in processes other than transcriptional repression.
    • (1997) Cell , vol.89 , pp. 349-356
    • Laherty, C.D.1    Yang, W.-M.2    Sun, J.-M.3    Davie, J.R.4    Seto, E.5    Eisenman, R.N.6
  • 50
    • 0030916729 scopus 로고    scopus 로고
    • Histone deacetylase and SAP18, a novel polypeptide, are components of a human Sin3 complex
    • Zhang Y, Iratni R, Erdjument-Bromage H, Tempst P, Reinberg D: Histone deacetylase and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 1997, 89:357-364.
    • (1997) Cell , vol.89 , pp. 357-364
    • Zhang, Y.1    Iratni, R.2    Erdjument-Bromage, H.3    Tempst, P.4    Reinberg, D.5
  • 52
    • 17744413444 scopus 로고    scopus 로고
    • A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression
    • Heinzel T, Lavinsky RM, Mullen TM, Söderström M, Laherty CD, Torchia J, Yang W-M, Brard G, Ngo SD, Davie JR et al.: A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 1997, 387:43-48. This paper describes the existence of a cellular complex containing N-CoR, mSin3, and histone deacetylase (HDAC), and/or HDAC2. In vitro mapping of the interaction domains identified two regions of N-CoR-mSin3 association. These regions are generally consistent with interaction domains of N-COR or SMRT identified by other researchers. Microinjection of antibodies to the various components of the repressor complex has demonstrated that each component is involved in mediating transcriptional repression of both Mad-regulated and steroid-hormone receptor regulated genes.
    • (1997) Nature , vol.387 , pp. 43-48
    • Heinzel, T.1    Lavinsky, R.M.2    Mullen, T.M.3    Söderström, M.4    Laherty, C.D.5    Torchia, J.6    Yang, W.-M.7    Brard, G.8    Ngo, S.D.9    Davie, J.R.10
  • 54
    • 0029850458 scopus 로고    scopus 로고
    • Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3
    • Yang W-M, Inouye C, Zeng Y, Bearss D, Seto E: Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc Natl Acad Sci USA 1996, 93:12845-12850.
    • (1996) Proc Natl Acad Sci USA , vol.93 , pp. 12845-12850
    • Yang, W.-M.1    Inouye, C.2    Zeng, Y.3    Bearss, D.4    Seto, E.5
  • 55
    • 0029353422 scopus 로고
    • Transcriptional regulation. Flipping the Myc switch
    • Bernards R: Transcriptional regulation. Flipping the Myc switch. Curr Biol 1995, 5:859-861.
    • (1995) Curr Biol , vol.5 , pp. 859-861
    • Bernards, R.1
  • 56
    • 0029004774 scopus 로고
    • Relief of YY1 transcriptional repression by adenovirus E1A is mediated by E1A-associated protein p300
    • Lee J-S, Galvin KM, See RH, Eckner R, Livingston D, Moran E, Shi Y: Relief of YY1 transcriptional repression by adenovirus E1A is mediated by E1A-associated protein p300. Genes Dev 1995, 9:1188-1198.
    • (1995) Genes Dev , vol.9 , pp. 1188-1198
    • Lee, J.-S.1    Galvin, K.M.2    See, R.H.3    Eckner, R.4    Livingston, D.5    Moran, E.6    Shi, Y.7
  • 57
    • 0028822470 scopus 로고
    • Suppressors of defective silencing in yeast: Effects on transcriptional repression at the HMR locus, cell growth and telomere structure
    • Sussel L, Vannier D, Shore D: Suppressors of defective silencing in yeast: effects on transcriptional repression at the HMR locus, cell growth and telomere structure. Genetics 1995, 141:873-888.
    • (1995) Genetics , vol.141 , pp. 873-888
    • Sussel, L.1    Vannier, D.2    Shore, D.3
  • 60
    • 1842295133 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptors and retinoic acid receptors differentially control the interactions of retinoid X receptor heterodimers with ligands, coactivators and corepressors
    • DiRenzo J, Söderström M, Kurokawa R, Ogliastro M-H, Ricote M, Ingrey S, Horlein A, Rosenfeld MG, Glass CK: Peroxisome proliferator-activated receptors and retinoic acid receptors differentially control the interactions of retinoid X receptor heterodimers with ligands, coactivators and corepressors. Mol Cell Biol 1997, 17:2166-2176.
    • (1997) Mol Cell Biol , vol.17 , pp. 2166-2176
    • DiRenzo, J.1    Söderström, M.2    Kurokawa, R.3    Ogliastro, M.-H.4    Ricote, M.5    Ingrey, S.6    Horlein, A.7    Rosenfeld, M.G.8    Glass, C.K.9


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.