-
1
-
-
0013434847
-
Homoclinics: Poincaré-Melnikov type results via a variational approach
-
A. Ambrosetti, M. Badiale, Homoclinics: Poincaré-Melnikov type results via a variational approach. Ann. IHP, Anal, non Lin., 15 (1998), 233-252.
-
(1998)
Ann. IHP, Anal, Non Lin.
, vol.15
, pp. 233-252
-
-
Ambrosetti, A.1
Badiale, M.2
-
2
-
-
0001913201
-
The existence of homoclinic motions
-
S. V. Bolotin, The existence of homoclinic motions. Vest. Mosk. Univ., Matem., 38 (1983), 98-103.
-
(1983)
Vest. Mosk. Univ., Matem.
, vol.38
, pp. 98-103
-
-
Bolotin, S.V.1
-
3
-
-
0003112945
-
Homoclinics and heteroclinics for a class of conservative singular Hamiltonian systems
-
P. Caldiroli, L. Jeanjean Homoclinics and heteroclinics for a class of conservative singular Hamiltonian systems. J. Diff. Eq., 136 (1997), 76-114.
-
(1997)
J. Diff. Eq.
, vol.136
, pp. 76-114
-
-
Caldiroli, P.1
Jeanjean, L.2
-
4
-
-
0000830631
-
A variational approach to homoclinic orbits in Hamiltonian systems
-
V. Coti Zelati, I. Ekeland, E. Séré, A variational approach to homoclinic orbits in Hamiltonian systems. Math. Annalen, 288 (1990), 133-160.
-
(1990)
Math. Annalen
, vol.288
, pp. 133-160
-
-
Coti Zelati, V.1
Ekeland, I.2
Séré, E.3
-
5
-
-
84968502322
-
Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials
-
V. Coti Zelati, P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. Jour. AMS, 4 (1991), 693-727.
-
(1991)
Jour. AMS
, vol.4
, pp. 693-727
-
-
Coti Zelati, V.1
Rabinowitz, P.H.2
-
6
-
-
0031104296
-
Heteroclinic chains for a reversible Hamiltonian system
-
T. O. Maxwell, Heteroclinic chains for a reversible Hamiltonian system Nonlin. Anal. TMA, 28 (1997), 871-887.
-
(1997)
Nonlin. Anal. TMA
, vol.28
, pp. 871-887
-
-
Maxwell, T.O.1
-
8
-
-
0003292012
-
Stable and random motions in dynamical systems
-
Princeton
-
J. Moser, Stable and random motions in dynamical systems. Ann. of Math. Studies 77, Princeton, 1973.
-
(1973)
Ann. of Math. Studies
, vol.77
-
-
Moser, J.1
-
9
-
-
0347736574
-
Homoclinic orbits in the forced pendulum system
-
D. C. Offin, H-F Yu, Homoclinic orbits in the forced pendulum system. Fields Inst. Comm., 8 (1996), 113-126.
-
(1996)
Fields Inst. Comm.
, vol.8
, pp. 113-126
-
-
Offin, D.C.1
Yu, H.-F.2
-
10
-
-
0000674979
-
Heteroclinics for a reversible Hamiltonian system
-
P. H. Rabinowitz, Heteroclinics for a reversible Hamiltonian system. Ergod. Th. and Dyn. Sys., 14 (1994), 817-829.
-
(1994)
Ergod. Th. and Dyn. Sys.
, vol.14
, pp. 817-829
-
-
Rabinowitz, P.H.1
-
11
-
-
84972514135
-
Heteroclinics for a reversible Hamiltonian system, 2
-
P. H. Rabinowitz, Heteroclinics for a reversible Hamiltonian system, 2. Diff. and Int. Eq., 7 (1994), 1557-1572.
-
(1994)
Diff. and Int. Eq.
, vol.7
, pp. 1557-1572
-
-
Rabinowitz, P.H.1
-
12
-
-
0002543448
-
Homoclinic and heteroclinic orbits for a class of Hamiltonian systems
-
P. H. Rabinowitz, Homoclinic and heteroclinic orbits for a class of Hamiltonian systems. Calc. Var. and PDEs, 1 (1993), 1-36.
-
(1993)
Calc. Var. and PDEs
, vol.1
, pp. 1-36
-
-
Rabinowitz, P.H.1
-
13
-
-
51249165518
-
Existence of infinitely many homoclinic orbits in Hamiltonian systems
-
E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian systems. Math. Zeit., 209 (1992), 27-42.
-
(1992)
Math. Zeit.
, vol.209
, pp. 27-42
-
-
Séré, E.1
-
14
-
-
85048948280
-
Looking for the Bernoulli shift
-
E. Séré, Looking for the Bernoulli shift. Ann. IHP, Anal, non Lin., 10 (1993), 561-590.
-
(1993)
Ann. IHP, Anal, Non Lin.
, vol.10
, pp. 561-590
-
-
Séré, E.1
-
15
-
-
0013037479
-
A reduction method for periodic solutions of second order subquadratic equations
-
E. Serra, M. Tarallo, A reduction method for periodic solutions of second order subquadratic equations. Adv. in Diff. Eq., 3 (1998), 199-226.
-
(1998)
Adv. in Diff. Eq.
, vol.3
, pp. 199-226
-
-
Serra, E.1
Tarallo, M.2
-
16
-
-
0030295256
-
On the structure of the solution set of forced pendulum-type equations
-
E. Serra, M. Tarallo, S. Terracini, On the structure of the solution set of forced pendulum-type equations. J. Diff. Eq., 131 (1996) 189-208.
-
(1996)
J. Diff. Eq.
, vol.131
, pp. 189-208
-
-
Serra, E.1
Tarallo, M.2
Terracini, S.3
-
17
-
-
0345845065
-
Non degeneracy and chaotic motions for a class of almost-periodic Lagrangian systems
-
to appear
-
S. Terracini, Non degeneracy and chaotic motions for a class of almost-periodic Lagrangian systems. Nonlin. Anal. TMA, to appear.
-
Nonlin. Anal. TMA
-
-
Terracini, S.1
|