-
1
-
-
0001168993
-
Multiple homoclinic orbits for a class of conservative systems
-
Ambrosetti A., Zelati V. Coti. Multiple homoclinic orbits for a class of conservative systems. Rend. Sem. Mat. Univ. Padova. 89:1993;177-194.
-
(1993)
Rend. Sem. Mat. Univ. Padova
, vol.89
, pp. 177-194
-
-
Ambrosetti, A.1
Zelati V. Coti2
-
2
-
-
0001796910
-
A variational approach for homoclinics in almost periodic Hamiltonian systems
-
Bertotti M. L., Bolotin S. A variational approach for homoclinics in almost periodic Hamiltonian systems. Comm. Appl. Nonlinear Anal. 2:1995;43-57.
-
(1995)
Comm. Appl. Nonlinear Anal.
, vol.2
, pp. 43-57
-
-
Bertotti, M.L.1
Bolotin, S.2
-
3
-
-
0040746191
-
Multiplicity of homoclinic solutions for singular second order conservative systems
-
M. L. Bertotti, L. Jeanjean, Multiplicity of homoclinic solutions for singular second order conservative systems, Proc. Roy. Soc. Edinburgh Sect. A.
-
Proc. Roy. Soc. Edinburgh Sect. a
-
-
Bertotti, M.L.1
Jeanjean, L.2
-
4
-
-
0001021553
-
Multiple homoclinic orbits for autonomous singular potentials
-
Bessi U. Multiple homoclinic orbits for autonomous singular potentials. Proc. Roy. Soc. Edinburgh Sect. A. 124:1994;785-802.
-
(1994)
Proc. Roy. Soc. Edinburgh Sect. a
, vol.124
, pp. 785-802
-
-
Bessi, U.1
-
7
-
-
0037520454
-
Dynamical Systems: Stability Theory and Applications
-
Berlin/New York: Springer-Verlag
-
Bhatia N. P., Szego G. P. Dynamical Systems: Stability Theory and Applications. Lecture Notes in Mathematics. Vol. 35:1967;Springer-Verlag, Berlin/New York.
-
(1967)
Lecture Notes in Mathematics
, vol.35
-
-
Bhatia, N.P.1
Szego, G.P.2
-
8
-
-
0043081376
-
A global condition for quasi random behavior in a class of conservative systems
-
Buffoni B., Séré E. A global condition for quasi random behavior in a class of conservative systems. Com. Pure Appl. Math. 49:1996;285-305.
-
(1996)
Com. Pure Appl. Math.
, vol.49
, pp. 285-305
-
-
Buffoni, B.1
Séré, E.2
-
9
-
-
0001975518
-
Homoclinic orbits for second order Hamiltonian systems with potential changing sign
-
Caldiroli P., Montecchiari P. Homoclinic orbits for second order Hamiltonian systems with potential changing sign. Comm. Appl. Nonlinear Anal. 1:1994;97-129.
-
(1994)
Comm. Appl. Nonlinear Anal.
, vol.1
, pp. 97-129
-
-
Caldiroli, P.1
Montecchiari, P.2
-
11
-
-
84974001786
-
Pseudo-holomorphic curves and multiplicity of homoclinic orbits
-
Cieliebak K., Séré E. Pseudo-holomorphic curves and multiplicity of homoclinic orbits. Duke Math. J. 77:1995;483-518.
-
(1995)
Duke Math. J.
, vol.77
, pp. 483-518
-
-
Cieliebak, K.1
Séré, E.2
-
12
-
-
0000830631
-
A variational approach to homoclinic orbits in Hamiltonian systems
-
Coti Zelati v., Ekeland I., Séré E. A variational approach to homoclinic orbits in Hamiltonian systems. Math. Ann. 288:1990;133-160.
-
(1990)
Math. Ann.
, vol.288
, pp. 133-160
-
-
Coti Zelati, V.1
Ekeland, I.2
Séré, E.3
-
13
-
-
84968502322
-
Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials
-
Coti Zelati v., Rabinowitz P. H. Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. Amer. Math. Soc. 4:1991;693-727.
-
(1991)
J. Amer. Math. Soc.
, vol.4
, pp. 693-727
-
-
Coti Zelati, V.1
Rabinowitz, P.H.2
-
14
-
-
85012922705
-
Heteroclinic orbits for spatially periodic Hamiltonian systems
-
Felmer P. L. Heteroclinic orbits for spatially periodic Hamiltonian systems. Ann. Inst. H. Poincaré, Anal. Non Linéaire. 8:1991;477-497.
-
(1991)
Ann. Inst. H. Poincaré, Anal. Non Linéaire
, vol.8
, pp. 477-497
-
-
Felmer, P.L.1
-
15
-
-
84967782996
-
Conservative dynamical systems involving strong forces
-
Gordon W. B. Conservative dynamical systems involving strong forces. Trans. Amer. Math. Soc. 204:1975;113-135.
-
(1975)
Trans. Amer. Math. Soc.
, vol.204
, pp. 113-135
-
-
Gordon, W.B.1
-
17
-
-
0001585656
-
The dynamics of geodesic flows
-
Hedlund G. A. The dynamics of geodesic flows. Bull. Amer. Math. Soc. 45:1939;241-260.
-
(1939)
Bull. Amer. Math. Soc.
, vol.45
, pp. 241-260
-
-
Hedlund, G.A.1
-
18
-
-
0001294182
-
The concentration-compactness principle in the calculus of variations
-
Lions P. L. The concentration-compactness principle in the calculus of variations. Rev. Mat. Iberoamericana. 1:1985;145-201.
-
(1985)
Rev. Mat. Iberoamericana
, vol.1
, pp. 145-201
-
-
Lions, P.L.1
-
19
-
-
0001834849
-
On the stability of the center for periodic perturbations
-
Melnikov V. K. On the stability of the center for periodic perturbations. Trans. Moscow Math. Soc. 12:1963;1-57.
-
(1963)
Trans. Moscow Math. Soc.
, vol.12
, pp. 1-57
-
-
Melnikov, V.K.1
-
20
-
-
0001788461
-
A fundamental class of geodesics in any closed surface of genus greater than one
-
Morse M. A fundamental class of geodesics in any closed surface of genus greater than one. Trans. Amer. Math. Soc. 26:1924;25-61.
-
(1924)
Trans. Amer. Math. Soc.
, vol.26
, pp. 25-61
-
-
Morse, M.1
-
23
-
-
85037775971
-
Periodic and heteroclinic orbits for a periodic Hamiltonian system
-
Rabinowitz P. H. Periodic and heteroclinic orbits for a periodic Hamiltonian system. Ann. Inst. H. Poincaré. Anal. Non Linéaire. 6:1989;331-346.
-
(1989)
Ann. Inst. H. Poincaré. Anal. Non Linéaire
, vol.6
, pp. 331-346
-
-
Rabinowitz, P.H.1
-
24
-
-
0040152017
-
A variational approach to heteroclinic orbits for a class of Hamiltonian systems
-
R. Dautray.
-
Rabinowitz P. H. A variational approach to heteroclinic orbits for a class of Hamiltonian systems. Dautray R. Frontiers in Pure and Applied Math. 1991.
-
(1991)
Frontiers in Pure and Applied Math
-
-
Rabinowitz, P.H.1
-
25
-
-
0039560799
-
Homoclinics for an almost periodically forced Hamiltonian system
-
Rabinowitz P. H. Homoclinics for an almost periodically forced Hamiltonian system. Top. Methods Nonlinear Anal. 6:1995;49-66.
-
(1995)
Top. Methods Nonlinear Anal.
, vol.6
, pp. 49-66
-
-
Rabinowitz, P.H.1
-
26
-
-
0003278385
-
Multibump solutions for an almost periodically forced singular Hamiltonian system
-
Rabinowitz P. H. Multibump solutions for an almost periodically forced singular Hamiltonian system. Electronic J. Differential Equations. 1995:1995.
-
(1995)
Electronic J. Differential Equations
, vol.1995
-
-
Rabinowitz, P.H.1
-
27
-
-
0000674979
-
Heteroclinics for a reversible Hamiltonian system
-
Rabinowitz P. H. Heteroclinics for a reversible Hamiltonian system. Ergodic Theory Dynam. Systems. 14:1994;817-829.
-
(1994)
Ergodic Theory Dynam. Systems
, vol.14
, pp. 817-829
-
-
Rabinowitz, P.H.1
-
28
-
-
84972514135
-
Heteroclinics for a reversible Hamiltonian system, 2
-
Rabinowitz P. H. Heteroclinics for a reversible Hamiltonian system, 2. Differential Integral Equations. 7:1994;1557-1572.
-
(1994)
Differential Integral Equations
, vol.7
, pp. 1557-1572
-
-
Rabinowitz, P.H.1
-
29
-
-
51249165518
-
Existence of infinitely many homoclinic orbits in Hamiltonian systems
-
Séré E. Existence of infinitely many homoclinic orbits in Hamiltonian systems. Math. Z. 209:1992;27-42.
-
(1992)
Math. Z.
, vol.209
, pp. 27-42
-
-
Séré, E.1
-
31
-
-
0000541044
-
A note on the existence of multiple homoclinic orbits for a perturbed radial potential
-
Tanaka K. A note on the existence of multiple homoclinic orbits for a perturbed radial potential. Nonlinear Differential Equations Appl. 1:1994;149-162.
-
(1994)
Nonlinear Differential Equations Appl.
, vol.1
, pp. 149-162
-
-
Tanaka, K.1
|