-
1
-
-
6044220923
-
Canonical transformations and the radial oscillator and Coulomb problems
-
M. Moshinsky, T. H. Seligman, and K. B. Wolf, “Canonical transformations and the radial oscillator and Coulomb problems,” J. Math. Phys. 13, 901–907 (1972).
-
(1972)
J. Math. Phys.
, vol.13
, pp. 901-907
-
-
Moshinsky, M.1
Seligman, T.H.2
Wolf, K.B.3
-
2
-
-
0001235633
-
Unitary irreducible representations of the Lorentz group
-
V. Bargmann, “Unitary irreducible representations of the Lorentz group,” Ann. Math. 48, 568–640 (1947).
-
(1947)
Ann. Math.
, vol.48
, pp. 568-640
-
-
Bargmann, V.1
-
3
-
-
0000678867
-
Fractional Fourier-Kravchuk transform
-
N. M. Atakishiyev and K. B. Wolf, “Fractional Fourier-Kravchuk transform,” J. Opt. Soc. Am. A 14, 1467–1477 (1997).
-
(1997)
J. Opt. Soc. Am. A
, vol.14
, pp. 1467-1477
-
-
Atakishiyev, N.M.1
Wolf, K.B.2
-
4
-
-
0000856269
-
Sur une générelization des polinomes dHermite
-
M. Krawtchouk, “Sur une générelization des polinomes d’Hermite,” C. R. Acad. Sci. Paris 189, 620–622 (1929)
-
(1929)
C. R. Acad. Sci. Paris
, vol.189
, pp. 620-622
-
-
Krawtchouk, M.1
-
5
-
-
0003864328
-
-
(McGraw-Hill, New York
-
A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vol. 2.
-
(1953)
Higher Transcendental Functions
, vol.2
-
-
Erdelyi, A.1
Magnus, W.2
Oberhettinger, F.3
Tricomi, F.G.4
-
6
-
-
34249922650
-
Difference analogs of the harmonic oscillator
-
N. M. Atakishiyev and S. K. Suslov, “Difference analogs of the harmonic oscillator,” Theor. Math. Phys. 85, 1055–1062 (1991)
-
(1991)
Theor. Math. Phys.
, vol.85
, pp. 1055-1062
-
-
Atakishiyev, N.M.1
Suslov, S.K.2
-
7
-
-
0038247792
-
Approximation on a finite set of points through Kravchuk functions
-
N. M. Atakishiyev and K. B. Wolf, “Approximation on a finite set of points through Kravchuk functions,” Rev. Mex. Fis. 40, 366–377 (1994).
-
(1994)
Rev. Mex. Fis.
, vol.40
, pp. 366-377
-
-
Atakishiyev, N.M.1
Wolf, K.B.2
-
8
-
-
0038585012
-
An algorithm for the Fourier-Bessel transform
-
S. M. Candel, “An algorithm for the Fourier-Bessel transform,” Comput. Phys. Commun. 23, 343–352 (1981)
-
(1981)
Comput. Phys. Commun.
, vol.23
, pp. 343-352
-
-
Candel, S.M.1
-
9
-
-
0000686517
-
Simultaneous calculation of Fourier-Bessel transforms up to orderN
-
S. M. Candel, “Simultaneous calculation of Fourier-Bessel transforms up to orderN,” Comput. Phys. Commun. 44, 243–250 (1981)
-
(1981)
Comput. Phys. Commun.
, vol.44
, pp. 243-250
-
-
Candel, S.M.1
-
10
-
-
0033076548
-
Numerical evaluation of the Hankel transform
-
J. D. Secada, “Numerical evaluation of the Hankel transform,” Comput. Phys. Commun. 116, 278–294 (1999).
-
(1999)
Comput. Phys. Commun.
, vol.116
, pp. 278-294
-
-
Secada, J.D.1
-
11
-
-
0032386847
-
Meixner oscillators
-
N. M. Atakishiyev, E. I. Jafarov, Sh. M. Nagiyev, and K. B. Wolf, “Meixner oscillators,” Rev. Mex. Fis. 44, 135–244 (1997).
-
(1997)
Rev. Mex. Fis.
, vol.44
, pp. 135-244
-
-
Atakishiyev, N.M.1
Jafarov, E.I.2
Nagiyev, S.H.3
Wolf, K.B.4
-
14
-
-
0034132255
-
The structure of paraxial optical systems
-
R. Simon and K. B. Wolf, “The structure of paraxial optical systems,” J. Opt. Soc. Am. A 17, 342–355 (2000).
-
(2000)
J. Opt. Soc. Am. A
, vol.17
, pp. 342-355
-
-
Simon, R.1
Wolf, K.B.2
-
17
-
-
36849101979
-
Canonical transforms. II. Complex radial transforms
-
K. B. Wolf, “Canonical transforms. II. Complex radial transforms,” J. Math. Phys. 15, 2101–2111 (1974).
-
(1974)
J. Math. Phys
, vol.15
, pp. 2101-2111
-
-
Wolf, K.B.1
-
18
-
-
36749117089
-
The unitary irreducible representations of SL(2, R) in all subgroup reductions
-
D. Basu and K. B. Wolf, “The unitary irreducible representations of SL(2, R) in all subgroup reductions,” J. Math. Phys. 23, 189–205 (1982).
-
(1982)
J. Math. Phys.
, vol.23
, pp. 189-205
-
-
Basu, D.1
Wolf, K.B.2
-
20
-
-
0038585014
-
Equally-spaced energy spectra: The harmonic oscillator with a centrifugal barrier or with a centripetal well
-
K. B. Wolf, “Equally-spaced energy spectra: the harmonic oscillator with a centrifugal barrier or with a centripetal well,” Kinam 3, 323–346 (1981)
-
(1981)
Kinam
, vol.3
, pp. 323-346
-
-
Wolf, K.B.1
-
21
-
-
85010182699
-
Canonical transformations to phase variables in quantum oscillator systems. A group-theoretic solution
-
“Canonical transformations to phase variables in quantum oscillator systems. A group-theoretic solution,” 4, 293–332 (1982).
-
(1982)
, vol.4
, pp. 293-332
-
-
-
24
-
-
0038246359
-
Canonical transforms. IV. Hyperbolic transforms: Continuous series of SL(2, R) representations
-
K. B. Wolf, “Canonical transforms. IV. Hyperbolic transforms: continuous series of SL(2, R) representations,” J. Math. Phys. 21, 680–688 (1980).
-
(1980)
J. Math. Phys.
, vol.21
, pp. 680-688
-
-
Wolf, K.B.1
-
25
-
-
84960600688
-
Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion
-
J. Meixner, “Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion,” J. London Math. Soc. 9, 6–13 (1934).
-
(1934)
J. London Math. Soc.
, vol.9
, pp. 6-13
-
-
Meixner, J.1
-
26
-
-
77958407025
-
The fractional order Fourier transform and its application to quantum mechanics
-
V. Namias, “The fractional order Fourier transform and its application to quantum mechanics,” J. Inst. Math. Appl. 25, 241–265 (1980)
-
(1980)
J. Inst. Math. Appl.
, vol.25
, pp. 241-265
-
-
Namias, V.1
-
27
-
-
0008807541
-
Fractionalization of Hankel transforms
-
V. Namias, “Fractionalization of Hankel transforms,” J. Inst. Math. Appl. 26, 187–197 (1980).
-
(1980)
J. Inst. Math. Appl.
, vol.26
, pp. 187-197
-
-
Namias, V.1
-
31
-
-
34250460403
-
New ‘coherent states associated with non-compact groups
-
A. O. Barut and L. Girardello, “New ‘coherent’ states associated with non-compact groups,” Commun. Math. Phys. 21, 41–55 (1971).
-
(1971)
Commun. Math. Phys.
, vol.21
, pp. 41-55
-
-
Barut, A.O.1
Girardello, L.2
-
32
-
-
0033566157
-
Continuous vs. Discrete fractional Fourier transforms
-
N. M. Atakishiyev, L. E. Vicent, and K. B. Wolf, “Continuous vs. discrete fractional Fourier transforms,” J. Comput. Appl. Math. 107, 73–95 (1999).
-
(1999)
J. Comput. Appl. Math.
, vol.107
, pp. 73-95
-
-
Atakishiyev, N.M.1
Vicent, L.E.2
Wolf, K.B.3
-
33
-
-
33744505701
-
A Wigner-function formulation of finitestate quantum mechanics
-
W. K. Wootters, “A Wigner-function formulation of finitestate quantum mechanics,” Ann. Phys. 176, 1–21 (1987).
-
(1987)
Ann. Phys.
, vol.176
, pp. 1-21
-
-
Wootters, W.K.1
-
34
-
-
0032555392
-
Finite-dimensional Schwinger basis, deformed symmetries, Wigner function, and an algebraic approach to quantum phase
-
T. Hakioglu, “Finite-dimensional Schwinger basis, deformed symmetries, Wigner function, and an algebraic approach to quantum phase,” J. Phys. A 31, 6975–6994 (1998).
-
(1998)
J. Phys. A
, vol.31
, pp. 6975-6994
-
-
Hakioglu, T.1
-
35
-
-
0041020407
-
Linear canonical transformations and quantum phase: A unified canonical and algebraic approach
-
“Linear canonical transformations and quantum phase: a unified canonical and algebraic approach,” 32, 4111–4130 (1999)
-
(1999)
, vol.32
, pp. 4111-4130
-
-
-
36
-
-
84893990220
-
The action-angle Wigner function: A discrete and algebraic phase space formalism
-
(to be published)
-
T. Hakioglu and E. Tepedelenlioglu, “The action-angle Wigner function: a discrete and algebraic phase space formalism,” J. Phys. A (to be published).
-
J. Phys.
, vol.A
-
-
Hakioglu, T.1
Tepedelenlioglu, E.2
-
37
-
-
33745014742
-
On the quantum correction for thermodynamic equilibrium
-
E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749–759 (1932)
-
(1932)
Phys. Rev.
, vol.40
, pp. 749-759
-
-
Wigner, E.1
-
38
-
-
4243870641
-
Theory and application of the quantum phase-space distribution functions
-
H.-W. Lee, “Theory and application of the quantum phase-space distribution functions,” Phys. Rep. 259, 147–211 (1995)
-
(1995)
Phys. Rep.
, vol.259
, pp. 147-211
-
-
Lee, H.-W.1
-
39
-
-
49149141092
-
The Wigner distribution function and its optical production
-
H. O. Bartelt, K.-H. Brenner, and H. Lohmann, “The Wigner distribution function and its optical production,” Opt. Commun. 32, 32–38 (1980).
-
(1980)
Opt. Commun.
, vol.32
, pp. 32-38
-
-
Bartelt, H.O.1
Brenner, K.-H.2
Lohmann, H.3
-
40
-
-
0001982840
-
Lie-Poisson description of Hamiltonian ray optics
-
D. D. Holm and K. B. Wolf, “Lie-Poisson description of Hamiltonian ray optics,” Physica D 51, 189–199 (1991).
-
(1991)
Physica D
, vol.51
, pp. 189-199
-
-
Holm, D.D.1
Wolf, K.B.2
-
41
-
-
0032347073
-
Wigner distribution function for finite systems
-
N. M. Atakishiyev, S. M. Chumakov, and K. B. Wolf, “Wigner distribution function for finite systems,” J. Math. Phys. 39, 6247–6261 (1998).
-
(1998)
J. Math. Phys.
, vol.39
, pp. 6247-6261
-
-
Atakishiyev, N.M.1
Chumakov, S.M.2
Wolf, K.B.3
-
42
-
-
0034356779
-
The Wigner function for general Lie groups and the wavelet transform
-
S. T. Ali, N. M. Atakishiyev, S. M. Chumakov, and K. B. Wolf, “The Wigner function for general Lie groups and the wavelet transform,” Ann. Inst. Henri Poincaré Phys. Theor. 1, 685–714 (2000).
-
(2000)
Ann. Inst. Henri Poincaré Phys. Theor.
, vol.1
, pp. 685-714
-
-
Ali, S.T.1
Atakishiyev, N.M.2
Chumakov, S.M.3
Wolf, K.B.4
-
43
-
-
0000564194
-
Relation between atomic coherent-state representation, state multipoles, and generalized phasespace distributions
-
G. S. Agarwal, “Relation between atomic coherent-state representation, state multipoles, and generalized phasespace distributions,” Phys. Rev. A 24, 2889–2896 (1981)
-
(1981)
Phys. Rev. A
, vol.24
, pp. 2889-2896
-
-
Agarwal, G.S.1
-
45
-
-
0000417749
-
Wigner distribution of a general angular-momentum state: Applications to a collection of two-level atoms
-
J. P. Dowling, G. S. Agarwal, and W. P. Schleich, “Wigner distribution of a general angular-momentum state: applications to a collection of two-level atoms,” Phys. Rev. A 49, 4101–4109 (1994).
-
(1994)
Phys. Rev. A
, vol.49
, pp. 4101-4109
-
-
Dowling, J.P.1
Agarwal, G.S.2
Schleich, W.P.3
-
46
-
-
85037254449
-
Connection between two Wigner functions for spin systems
-
S. M. Chumakov, A. B. Klimov, and K. B. Wolf, “Connection between two Wigner functions for spin systems,” Phys. Rev. A 61, 034101–1-034101-3 (2000).
-
(2000)
Phys. Rev.
, vol.A61
, pp. 34101-1-34101-3
-
-
Chumakov, S.M.1
Klimov, A.B.2
Wolf, K.B.3
-
47
-
-
0001101694
-
-
S. M. Chumakov, A. Frank, and K. B. Wolf, “Finite Kerr medium: Schrodinger cats and Wigner functions on the sphere,” Phys. Rev. A 60, 1817–1823 (1999).
-
(1999)
Finite Kerr Medium: Schrodinger Cats and Wigner Functions on the Sphere, Phys. Rev. A
, vol.60
, pp. 1817-1823
-
-
Chumakov, S.M.1
Frank, A.2
Wolf, K.B.3
-
48
-
-
51249195007
-
Three-dimensional Lorentz group andharmonic analysis of the scattering amplitude
-
M. Toller, “Three-dimensional Lorentz group andharmonic analysis of the scattering amplitude,” Nuovo Cimento 37, 631–657 (1965)
-
(1965)
Nuovo Cimento
, vol.37
, pp. 631-657
-
-
Toller, M.1
-
49
-
-
0038246360
-
Relation of the O(2, 1) partialwave expansion to the Regge representation
-
J. F. Boyce, “Relation of the O(2, 1) partialwave expansion to the Regge representation,” J. Math. Phys. 8, 675–684 (1967)
-
(1967)
J. Math. Phys.
, vol.8
, pp. 675-684
-
-
Boyce, J.F.1
-
50
-
-
51249192520
-
An expansion of the scattering amplitude at vanishing four-momentum transfer using the representations of the Lorentz group
-
M. Toller, “An expansion of the scattering amplitude at vanishing four-momentum transfer using the representations of the Lorentz group,” Nuovo Cimento 53, 671–715 (1968).
-
(1968)
Nuovo Cimento
, vol.53
, pp. 671-715
-
-
Toller, M.1
-
51
-
-
0003851729
-
-
National Bureau of Standards, Washington, D.C
-
M. Abramowitz and I. Stegun, eds., Handbook of Mathematical Functions, Vol. 55 of Applied Mathematics Series (National Bureau of Standards, Washington, D.C., 1964).
-
(1964)
Handbook of Mathematical Functions, Vol. 55 of Applied Mathematics Series
-
-
Abramowitz, M.1
Stegun, I.2
|