메뉴 건너뛰기




Volumn 17, Issue 12, 2000, Pages 2301-2314

Covariant discretization of axis-symmetric linear optical systems

Author keywords

[No Author keywords available]

Indexed keywords

FOURIER TRANSFORMS; MATRIX ALGEBRA; OPTICAL SENSORS; SET THEORY; WAVEGUIDE COMPONENTS;

EID: 0006772027     PISSN: 10847529     EISSN: 15208532     Source Type: Journal    
DOI: 10.1364/JOSAA.17.002301     Document Type: Article
Times cited : (10)

References (51)
  • 1
    • 6044220923 scopus 로고
    • Canonical transformations and the radial oscillator and Coulomb problems
    • M. Moshinsky, T. H. Seligman, and K. B. Wolf, “Canonical transformations and the radial oscillator and Coulomb problems,” J. Math. Phys. 13, 901–907 (1972).
    • (1972) J. Math. Phys. , vol.13 , pp. 901-907
    • Moshinsky, M.1    Seligman, T.H.2    Wolf, K.B.3
  • 2
    • 0001235633 scopus 로고
    • Unitary irreducible representations of the Lorentz group
    • V. Bargmann, “Unitary irreducible representations of the Lorentz group,” Ann. Math. 48, 568–640 (1947).
    • (1947) Ann. Math. , vol.48 , pp. 568-640
    • Bargmann, V.1
  • 3
    • 0000678867 scopus 로고    scopus 로고
    • Fractional Fourier-Kravchuk transform
    • N. M. Atakishiyev and K. B. Wolf, “Fractional Fourier-Kravchuk transform,” J. Opt. Soc. Am. A 14, 1467–1477 (1997).
    • (1997) J. Opt. Soc. Am. A , vol.14 , pp. 1467-1477
    • Atakishiyev, N.M.1    Wolf, K.B.2
  • 4
    • 0000856269 scopus 로고
    • Sur une générelization des polinomes dHermite
    • M. Krawtchouk, “Sur une générelization des polinomes d’Hermite,” C. R. Acad. Sci. Paris 189, 620–622 (1929)
    • (1929) C. R. Acad. Sci. Paris , vol.189 , pp. 620-622
    • Krawtchouk, M.1
  • 6
    • 34249922650 scopus 로고
    • Difference analogs of the harmonic oscillator
    • N. M. Atakishiyev and S. K. Suslov, “Difference analogs of the harmonic oscillator,” Theor. Math. Phys. 85, 1055–1062 (1991)
    • (1991) Theor. Math. Phys. , vol.85 , pp. 1055-1062
    • Atakishiyev, N.M.1    Suslov, S.K.2
  • 7
    • 0038247792 scopus 로고
    • Approximation on a finite set of points through Kravchuk functions
    • N. M. Atakishiyev and K. B. Wolf, “Approximation on a finite set of points through Kravchuk functions,” Rev. Mex. Fis. 40, 366–377 (1994).
    • (1994) Rev. Mex. Fis. , vol.40 , pp. 366-377
    • Atakishiyev, N.M.1    Wolf, K.B.2
  • 8
    • 0038585012 scopus 로고
    • An algorithm for the Fourier-Bessel transform
    • S. M. Candel, “An algorithm for the Fourier-Bessel transform,” Comput. Phys. Commun. 23, 343–352 (1981)
    • (1981) Comput. Phys. Commun. , vol.23 , pp. 343-352
    • Candel, S.M.1
  • 9
    • 0000686517 scopus 로고
    • Simultaneous calculation of Fourier-Bessel transforms up to orderN
    • S. M. Candel, “Simultaneous calculation of Fourier-Bessel transforms up to orderN,” Comput. Phys. Commun. 44, 243–250 (1981)
    • (1981) Comput. Phys. Commun. , vol.44 , pp. 243-250
    • Candel, S.M.1
  • 10
    • 0033076548 scopus 로고    scopus 로고
    • Numerical evaluation of the Hankel transform
    • J. D. Secada, “Numerical evaluation of the Hankel transform,” Comput. Phys. Commun. 116, 278–294 (1999).
    • (1999) Comput. Phys. Commun. , vol.116 , pp. 278-294
    • Secada, J.D.1
  • 14
    • 0034132255 scopus 로고    scopus 로고
    • The structure of paraxial optical systems
    • R. Simon and K. B. Wolf, “The structure of paraxial optical systems,” J. Opt. Soc. Am. A 17, 342–355 (2000).
    • (2000) J. Opt. Soc. Am. A , vol.17 , pp. 342-355
    • Simon, R.1    Wolf, K.B.2
  • 17
    • 36849101979 scopus 로고
    • Canonical transforms. II. Complex radial transforms
    • K. B. Wolf, “Canonical transforms. II. Complex radial transforms,” J. Math. Phys. 15, 2101–2111 (1974).
    • (1974) J. Math. Phys , vol.15 , pp. 2101-2111
    • Wolf, K.B.1
  • 18
    • 36749117089 scopus 로고
    • The unitary irreducible representations of SL(2, R) in all subgroup reductions
    • D. Basu and K. B. Wolf, “The unitary irreducible representations of SL(2, R) in all subgroup reductions,” J. Math. Phys. 23, 189–205 (1982).
    • (1982) J. Math. Phys. , vol.23 , pp. 189-205
    • Basu, D.1    Wolf, K.B.2
  • 20
    • 0038585014 scopus 로고
    • Equally-spaced energy spectra: The harmonic oscillator with a centrifugal barrier or with a centripetal well
    • K. B. Wolf, “Equally-spaced energy spectra: the harmonic oscillator with a centrifugal barrier or with a centripetal well,” Kinam 3, 323–346 (1981)
    • (1981) Kinam , vol.3 , pp. 323-346
    • Wolf, K.B.1
  • 21
    • 85010182699 scopus 로고
    • Canonical transformations to phase variables in quantum oscillator systems. A group-theoretic solution
    • “Canonical transformations to phase variables in quantum oscillator systems. A group-theoretic solution,” 4, 293–332 (1982).
    • (1982) , vol.4 , pp. 293-332
  • 24
    • 0038246359 scopus 로고
    • Canonical transforms. IV. Hyperbolic transforms: Continuous series of SL(2, R) representations
    • K. B. Wolf, “Canonical transforms. IV. Hyperbolic transforms: continuous series of SL(2, R) representations,” J. Math. Phys. 21, 680–688 (1980).
    • (1980) J. Math. Phys. , vol.21 , pp. 680-688
    • Wolf, K.B.1
  • 25
    • 84960600688 scopus 로고
    • Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion
    • J. Meixner, “Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion,” J. London Math. Soc. 9, 6–13 (1934).
    • (1934) J. London Math. Soc. , vol.9 , pp. 6-13
    • Meixner, J.1
  • 26
    • 77958407025 scopus 로고
    • The fractional order Fourier transform and its application to quantum mechanics
    • V. Namias, “The fractional order Fourier transform and its application to quantum mechanics,” J. Inst. Math. Appl. 25, 241–265 (1980)
    • (1980) J. Inst. Math. Appl. , vol.25 , pp. 241-265
    • Namias, V.1
  • 27
    • 0008807541 scopus 로고
    • Fractionalization of Hankel transforms
    • V. Namias, “Fractionalization of Hankel transforms,” J. Inst. Math. Appl. 26, 187–197 (1980).
    • (1980) J. Inst. Math. Appl. , vol.26 , pp. 187-197
    • Namias, V.1
  • 31
    • 34250460403 scopus 로고
    • New ‘coherent states associated with non-compact groups
    • A. O. Barut and L. Girardello, “New ‘coherent’ states associated with non-compact groups,” Commun. Math. Phys. 21, 41–55 (1971).
    • (1971) Commun. Math. Phys. , vol.21 , pp. 41-55
    • Barut, A.O.1    Girardello, L.2
  • 32
    • 0033566157 scopus 로고    scopus 로고
    • Continuous vs. Discrete fractional Fourier transforms
    • N. M. Atakishiyev, L. E. Vicent, and K. B. Wolf, “Continuous vs. discrete fractional Fourier transforms,” J. Comput. Appl. Math. 107, 73–95 (1999).
    • (1999) J. Comput. Appl. Math. , vol.107 , pp. 73-95
    • Atakishiyev, N.M.1    Vicent, L.E.2    Wolf, K.B.3
  • 33
    • 33744505701 scopus 로고
    • A Wigner-function formulation of finitestate quantum mechanics
    • W. K. Wootters, “A Wigner-function formulation of finitestate quantum mechanics,” Ann. Phys. 176, 1–21 (1987).
    • (1987) Ann. Phys. , vol.176 , pp. 1-21
    • Wootters, W.K.1
  • 34
    • 0032555392 scopus 로고    scopus 로고
    • Finite-dimensional Schwinger basis, deformed symmetries, Wigner function, and an algebraic approach to quantum phase
    • T. Hakioglu, “Finite-dimensional Schwinger basis, deformed symmetries, Wigner function, and an algebraic approach to quantum phase,” J. Phys. A 31, 6975–6994 (1998).
    • (1998) J. Phys. A , vol.31 , pp. 6975-6994
    • Hakioglu, T.1
  • 35
    • 0041020407 scopus 로고    scopus 로고
    • Linear canonical transformations and quantum phase: A unified canonical and algebraic approach
    • “Linear canonical transformations and quantum phase: a unified canonical and algebraic approach,” 32, 4111–4130 (1999)
    • (1999) , vol.32 , pp. 4111-4130
  • 36
    • 84893990220 scopus 로고    scopus 로고
    • The action-angle Wigner function: A discrete and algebraic phase space formalism
    • (to be published)
    • T. Hakioglu and E. Tepedelenlioglu, “The action-angle Wigner function: a discrete and algebraic phase space formalism,” J. Phys. A (to be published).
    • J. Phys. , vol.A
    • Hakioglu, T.1    Tepedelenlioglu, E.2
  • 37
    • 33745014742 scopus 로고
    • On the quantum correction for thermodynamic equilibrium
    • E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749–759 (1932)
    • (1932) Phys. Rev. , vol.40 , pp. 749-759
    • Wigner, E.1
  • 38
    • 4243870641 scopus 로고
    • Theory and application of the quantum phase-space distribution functions
    • H.-W. Lee, “Theory and application of the quantum phase-space distribution functions,” Phys. Rep. 259, 147–211 (1995)
    • (1995) Phys. Rep. , vol.259 , pp. 147-211
    • Lee, H.-W.1
  • 39
    • 49149141092 scopus 로고
    • The Wigner distribution function and its optical production
    • H. O. Bartelt, K.-H. Brenner, and H. Lohmann, “The Wigner distribution function and its optical production,” Opt. Commun. 32, 32–38 (1980).
    • (1980) Opt. Commun. , vol.32 , pp. 32-38
    • Bartelt, H.O.1    Brenner, K.-H.2    Lohmann, H.3
  • 40
    • 0001982840 scopus 로고
    • Lie-Poisson description of Hamiltonian ray optics
    • D. D. Holm and K. B. Wolf, “Lie-Poisson description of Hamiltonian ray optics,” Physica D 51, 189–199 (1991).
    • (1991) Physica D , vol.51 , pp. 189-199
    • Holm, D.D.1    Wolf, K.B.2
  • 41
    • 0032347073 scopus 로고    scopus 로고
    • Wigner distribution function for finite systems
    • N. M. Atakishiyev, S. M. Chumakov, and K. B. Wolf, “Wigner distribution function for finite systems,” J. Math. Phys. 39, 6247–6261 (1998).
    • (1998) J. Math. Phys. , vol.39 , pp. 6247-6261
    • Atakishiyev, N.M.1    Chumakov, S.M.2    Wolf, K.B.3
  • 43
    • 0000564194 scopus 로고
    • Relation between atomic coherent-state representation, state multipoles, and generalized phasespace distributions
    • G. S. Agarwal, “Relation between atomic coherent-state representation, state multipoles, and generalized phasespace distributions,” Phys. Rev. A 24, 2889–2896 (1981)
    • (1981) Phys. Rev. A , vol.24 , pp. 2889-2896
    • Agarwal, G.S.1
  • 45
    • 0000417749 scopus 로고
    • Wigner distribution of a general angular-momentum state: Applications to a collection of two-level atoms
    • J. P. Dowling, G. S. Agarwal, and W. P. Schleich, “Wigner distribution of a general angular-momentum state: applications to a collection of two-level atoms,” Phys. Rev. A 49, 4101–4109 (1994).
    • (1994) Phys. Rev. A , vol.49 , pp. 4101-4109
    • Dowling, J.P.1    Agarwal, G.S.2    Schleich, W.P.3
  • 46
    • 85037254449 scopus 로고    scopus 로고
    • Connection between two Wigner functions for spin systems
    • S. M. Chumakov, A. B. Klimov, and K. B. Wolf, “Connection between two Wigner functions for spin systems,” Phys. Rev. A 61, 034101–1-034101-3 (2000).
    • (2000) Phys. Rev. , vol.A61 , pp. 34101-1-34101-3
    • Chumakov, S.M.1    Klimov, A.B.2    Wolf, K.B.3
  • 48
    • 51249195007 scopus 로고
    • Three-dimensional Lorentz group andharmonic analysis of the scattering amplitude
    • M. Toller, “Three-dimensional Lorentz group andharmonic analysis of the scattering amplitude,” Nuovo Cimento 37, 631–657 (1965)
    • (1965) Nuovo Cimento , vol.37 , pp. 631-657
    • Toller, M.1
  • 49
    • 0038246360 scopus 로고
    • Relation of the O(2, 1) partialwave expansion to the Regge representation
    • J. F. Boyce, “Relation of the O(2, 1) partialwave expansion to the Regge representation,” J. Math. Phys. 8, 675–684 (1967)
    • (1967) J. Math. Phys. , vol.8 , pp. 675-684
    • Boyce, J.F.1
  • 50
    • 51249192520 scopus 로고
    • An expansion of the scattering amplitude at vanishing four-momentum transfer using the representations of the Lorentz group
    • M. Toller, “An expansion of the scattering amplitude at vanishing four-momentum transfer using the representations of the Lorentz group,” Nuovo Cimento 53, 671–715 (1968).
    • (1968) Nuovo Cimento , vol.53 , pp. 671-715
    • Toller, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.