-
4
-
-
11944256577
-
-
M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).
-
(1992)
Rev. Mod. Phys.
, vol.64
, pp. 1045
-
-
Payne, M.1
Teter, M.2
Allan, D.3
Arias, T.4
Joannopoulos, J.5
-
10
-
-
0003833820
-
-
See, e.g., E.K.U. Gross, J.F. Dobson, and M. Petersilka, in Density Functional Theory II, edited by R.F. Nalewajski (Springer-Verlag, Berlin, 1996), p. 97.
-
(1996)
Density Functional Theory II
, pp. 97
-
-
Gross, E.1
Dobson, J.2
Petersilka, M.3
-
11
-
-
0031244637
-
-
C. Kan, N.H. Burnett, C.E. Capjack, and R. Rankin, Phys. Rev. Lett. 79, 2971 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 2971
-
-
Kan, C.1
Burnett, N.2
Capjack, C.3
Rankin, R.4
-
12
-
-
0030565934
-
-
N.H. Tolk, R.G. Albridge, A.V. Bernes, B.M. Bernes, J.L. Davidson, V.D. Gordon, G. Mergeritoudo, J.T. McKinley, G.A. Mensing, and J. Sturmann, Appl. Surf. Sci. 106, 205 (1996).
-
(1996)
Appl. Surf. Sci.
, vol.106
, pp. 205
-
-
Tolk, N.1
Albridge, R.2
Bernes, A.3
Bernes, B.4
Davidson, J.5
Gordon, V.6
Mergeritoudo, G.7
McKinley, J.8
Mensing, G.9
Sturmann, J.10
-
13
-
-
21544476973
-
-
D.L. Klein, P.L. McEuen, J.E.B. Katari, R. Roth, and A.P. Alivisatos, Appl. Phys. Lett. 68, 2574 (1996).
-
(1996)
Appl. Phys. Lett.
, vol.68
, pp. 2574
-
-
Klein, D.1
McEuen, P.2
Katari, J.3
Roth, R.4
Alivisatos, A.5
-
14
-
-
1842413643
-
-
M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, and J.M. Tour, Science 278, 252 (1997).
-
(1997)
Science
, vol.278
, pp. 252
-
-
Reed, M.1
Zhou, C.2
Muller, C.3
Burgin, T.4
Tour, J.5
-
15
-
-
0003425118
-
-
See, e.g., Scanning Tunneling Microscopy III, edited by R. Wiesendanger and H.-J. Güntherodt (Springer-Verlag, Berlin, 1993).
-
(1993)
Scanning Tunneling Microscopy III
-
-
-
28
-
-
0031221461
-
-
S. Datta, W. Tian, S. Hong, R. Reifenberger, J.I. Henderson, and C.P. Kubiak, Phys. Rev. Lett. 79, 2530 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 2530
-
-
Datta, S.1
Tian, W.2
Hong, S.3
Reifenberger, R.4
Henderson, J.5
Kubiak, C.6
-
30
-
-
0004165270
-
-
Wiley, New York
-
We stress, however, that at a fixed energy and for a given finite basis set, the scattering amplitudes satisfy stationarity principles that lead to either a minimum or a maximum [see, e.g., J.R. Taylor, in Scattering Theory (Wiley, New York, 1972), p. 273]. A minimum principle is guaranteed only when the spectrum of the Hamiltonian has no bound states.
-
(1972)
Scattering Theory
-
-
Taylor, J.1
|