-
1
-
-
34848919386
-
-
G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett.49, 57 (1982).
-
(1982)
Phys. Rev. Lett.
, vol.49
, pp. 57
-
-
Binnig, G.1
Rohrer, H.2
Gerber, C.3
Weibel, E.4
-
2
-
-
85037917717
-
-
See, e.g., 28 of, edited by R. Wiesendanger and H. J. Güntherodt (Springer-Verlag, Berlin, 1995)
-
See, e.g., Scanning Tunneling Microscopy II, Vol. 28 of Springer Series in Surface Science, edited by R. Wiesendanger and H. J. Güntherodt (Springer-Verlag, Berlin, 1995).
-
-
-
-
6
-
-
0000531954
-
-
See, e.g., and
-
See, e.g., J. Tersoff and N D. Lang, Phys. Rev. Lett.65, 1132 (1990).
-
(1990)
Phys. Rev. Lett.
, vol.65
, pp. 1132
-
-
Tersoff, J.1
Lang, N.D.2
-
10
-
-
85037916841
-
-
C. Noguera, in, edited by R. Wiesendanger and H. J. Güntherodt, Springer Series in Surface Science, 29, 2nd ed. (Springer-Verlag, Berlin, 1993), p. 51
-
C. Noguera, in Scanning Tunneling Microscopy III, edited by R. Wiesendanger and H. J. Güntherodt, Springer Series in Surface Science, Vol. 29, 2nd ed. (Springer-Verlag, Berlin, 1993), p. 51;
-
-
-
-
12
-
-
0009354724
-
-
P. E. Blöchl, Kluwer, Dordrecht, and, in, edited by, p
-
A. J. Fisher and P E. Blöchl, in Computations for the Nanoscale, Vol. 240 of NATO Advanced Study Institute, Series E: Applied Science, edited by P. E. Blöchl (Kluwer, Dordrecht, 1993), p. 185.
-
(1993)
Computations for the Nanoscale, Vol. 240 of NATO Advanced Study Institute, Series E: Applied Science
, pp. 185
-
-
Fisher, A.J.1
Blöchl, P.E.2
-
13
-
-
0002642218
-
-
and references therein
-
H. Ness and A J. Fisher, Phys. Rev. B56, 12 469 (1997), and references therein.
-
(1997)
Phys. Rev. B
, vol.56
, pp. 12 469
-
-
Ness, H.1
Fisher, A.J.2
-
20
-
-
0001248241
-
-
L. Olesen, E. Laegsgaard, I. Stengaard, F. Besenbacher, J. Schiotz, P. Stoltze, K W. Jacobsen, and J K. Norskov, Phys. Rev. Lett.72, 2251 (1994);
-
(1994)
Phys. Rev. Lett.
, vol.72
, pp. 2251
-
-
Olesen, L.1
Laegsgaard, E.2
Stengaard, I.3
Besenbacher, F.4
Schiotz, J.5
Stoltze, P.6
Jacobsen, K.W.7
Norskov, J.K.8
-
25
-
-
0642335788
-
-
See, e.g., and, The Fermi surface of metals is well reproduced by DFT. The use of DFT wave functions and density of states is thus a minor approximation in this context
-
See, e.g., P L. Silvestrelli, A. Alavi, and M. Parrinello, Phys. Rev. B55, 15 515 (1997). The Fermi surface of metals is well reproduced by DFT. The use of DFT wave functions and density of states is thus a minor approximation in this context.
-
(1997)
Phys. Rev. B
, vol.55
, pp. 15 515
-
-
Silvestrelli, P.L.1
Alavi, A.2
Parrinello, M.3
-
26
-
-
85037879970
-
-
See, e.g., N. F. Mott in, (Oxford University Press, Oxford, 1987), p. 18
-
See, e.g., N. F. Mott in Conduction in Non-Crystalline Materials (Oxford University Press, Oxford, 1987), p. 18.
-
-
-
-
27
-
-
0003964324
-
-
Plenum Press, New York, in, p
-
G. D. Mahan, in Many-Particle Physics, 2nd ed. (Plenum Press, New York, 1990), p. 203.
-
(1990)
Many-Particle Physics, 2nd ed.
, pp. 203
-
-
Mahan, G.D.1
-
33
-
-
85037920071
-
-
the grid is, e.g., (442) when the tip (and its substrate) are positioned at the hollow and top site (the tip over a surface Al atom), (441) when it is in another nonequivalent position. For the surface with a vacancy only two, points have been used
-
the grid is, e.g., (442) when the tip (and its substrate) are positioned at the hollow and top site (the tip over a surface Al atom), (441) when it is in another nonequivalent position. For the surface with a vacancy only two k points have been used.
-
-
-
-
36
-
-
85037918477
-
-
The absolute value of the change in the conductivity cannot, however, be inferred from Fig. 22 since in that case both tip, substrate moved away from the surface
-
The absolute value of the change in the conductivity cannot, however, be inferred from Fig. 22 since in that case both tip and substrate moved away from the surface.
-
-
-
-
37
-
-
85037903376
-
-
The resistance when the tip is positioned at the border of the surface unit cell in the presence of the vacancy differs by less than 3% from the same quantity for the surface without the vacancy. Image effects from adjacent unit cells are thus negligible
-
The resistance when the tip is positioned at the border of the surface unit cell in the presence of the vacancy differs by less than 3% from the same quantity for the surface without the vacancy. Image effects from adjacent unit cells are thus negligible.
-
-
-
-
38
-
-
0000434708
-
-
J. Wintterlin, J. Wiechers, H. Brune, T. Gritsch, H. Höfer, and R J. Behm, Phys. Rev. Lett.62, 59 (1989).
-
(1989)
Phys. Rev. Lett.
, vol.62
, pp. 59
-
-
Wintterlin, J.1
Wiechers, J.2
Brune, H.3
Gritsch, T.4
Höfer, H.5
Behm, R.J.6
|