메뉴 건너뛰기




Volumn 2, Issue 2, 1999, Pages 104-110

Image feature extraction and denoising by sparse coding

Author keywords

Denoising; Feature extraction; Independent component analysis; Sparse coding

Indexed keywords


EID: 0033433881     PISSN: 14337541     EISSN: None     Source Type: Journal    
DOI: 10.1007/s100440050021     Document Type: Article
Times cited : (19)

References (20)
  • 2
    • 0003833285 scopus 로고
    • Society for Industrial and Applied Math., Philadelphia
    • Daubechies I. Ten Lectures on Wavelets. Society for Industrial and Applied Math., Philadelphia, 1992
    • (1992) Ten Lectures on Wavelets
    • Daubechies, I.1
  • 3
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: The wavelet representation
    • Mallat SG. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans on PAMI 1989; 11:674-693
    • (1989) IEEE Trans on PAMI , vol.11 , pp. 674-693
    • Mallat, S.G.1
  • 4
    • 0000797290 scopus 로고
    • What is the computational goal of the neocortex?
    • C Koch and JL Davis (eds) MIT Press, Cambridge, MA
    • Barlow HB. What is the computational goal of the neocortex? In C Koch and JL Davis (eds) Large-scale Neuronal Theories of the Brain. MIT Press, Cambridge, MA, 1994
    • (1994) Large-scale Neuronal Theories of the Brain
    • Barlow, H.B.1
  • 5
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Olshausen BA, Field DJ. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 1996; 381:607-609
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 6
    • 0000929221 scopus 로고
    • What is the goal of sensory coding?
    • Field DJ. What is the goal of sensory coding? Neural Computation 1994; 6:559-601
    • (1994) Neural Computation , vol.6 , pp. 559-601
    • Field, D.J.1
  • 7
    • 0344505705 scopus 로고    scopus 로고
    • Independent component analysis in the presence of gaussian noise by maximizing joint likelihood
    • Hyvärinen A. Independent component analysis in the presence of gaussian noise by maximizing joint likelihood. Neurocomputing 1998; 22:49-67
    • (1998) Neurocomputing , vol.22 , pp. 49-67
    • Hyvärinen, A.1
  • 8
    • 0026191274 scopus 로고
    • Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture
    • Jutten C, Herault J. Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture. Signal Processing 1991; 24:1-10
    • (1991) Signal Processing , vol.24 , pp. 1-10
    • Jutten, C.1    Herault, J.2
  • 9
    • 0028416938 scopus 로고
    • Independent component analysis - A new concept?
    • Comon P. Independent component analysis - a new concept? Signal Processing 1994; 36:287-314
    • (1994) Signal Processing , vol.36 , pp. 287-314
    • Comon, P.1
  • 10
    • 0346307721 scopus 로고    scopus 로고
    • A fast fixed-point algorithm for independent component analysis
    • Hyvärinen A, Oja E. A fast fixed-point algorithm for independent component analysis. Neural Computation 1997; 9(7):1483-1492
    • (1997) Neural Computation , vol.9 , Issue.7 , pp. 1483-1492
    • Hyvärinen, A.1    Oja, E.2
  • 11
    • 0343416807 scopus 로고    scopus 로고
    • The nonlinear PCA learning rule in independent component analysis
    • Oja E. The nonlinear PCA learning rule in independent component analysis. Neurocomputing 1997; 17(1):25-46
    • (1997) Neurocomputing , vol.17 , Issue.1 , pp. 25-46
    • Oja, E.1
  • 12
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • Hyvärinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans on Neural Networks 1999; 10(3): 626-634
    • (1999) IEEE Trans on Neural Networks , vol.10 , Issue.3 , pp. 626-634
    • Hyvärinen, A.1
  • 16
    • 0002090822 scopus 로고    scopus 로고
    • Image feature extraction by sparse coding and independent component analysis
    • Brisbane, Australia
    • Hyvärinen A, Oja E, Hoyer P, Hurri J. 1997; Image feature extraction by sparse coding and independent component analysis. In Proc Int Conf on Pattern Recognition (ICPR'98), Brisbane, Australia, 1998, 1268-1273
    • (1997) Proc Int Conf on Pattern Recognition (ICPR'98) , pp. 1268-1273
    • Hyvärinen, A.1    Oja, E.2    Hoyer, P.3    Hurri, J.4
  • 18
    • 19544368947 scopus 로고    scopus 로고
    • Denoising of Sensory data by maximum likelihood estimation of sparse components
    • Skovde, Sweden
    • Hyvärinen A. Denoising of Sensory data by maximum likelihood estimation of sparse components. In Proc Int Conf on Artificial Neural Networks (ICANN'98), Skovde, Sweden, 1998; 141-146
    • (1998) Proc Int Conf on Artificial Neural Networks (ICANN'98) , pp. 141-146
    • Hyvärinen, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.