메뉴 건너뛰기




Volumn 168, Issue 1-4, 2004, Pages 133-170

A modified PNN algorithm with optimal PD modeling using the orthogonal least squares method

Author keywords

Classification; Group method of data handling; Optimal partial description modeling; Orthogonal least squares method; Polynomial neural networks; Time series modeling

Indexed keywords

ALGORITHMS; ERROR ANALYSIS; LEAST SQUARES APPROXIMATIONS; POLYNOMIALS; PROBLEM SOLVING; TIME SERIES ANALYSIS;

EID: 9544258259     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2004.02.001     Document Type: Article
Times cited : (16)

References (35)
  • 3
    • 9544258130 scopus 로고
    • Long-rand prediction of random processes by GMDH algorithms using the unbiasedness criterion and balance-of-variables criterion
    • A.G. Ivakhnenko, N.A. Ivakhnenko, Long-rand prediction of random processes by GMDH algorithms using the unbiasedness criterion and balance-of-variables criterion, Automatyka, Soviet Automatic Control 4 (1974) 52-58.
    • (1974) Automatyka, Soviet Automatic Control , vol.4 , pp. 52-58
    • Ivakhnenko, A.G.1    Ivakhnenko, N.A.2
  • 4
    • 34250267715 scopus 로고
    • Development of models of optimal complexity using Selg-organization theory
    • A.G. Ivakhnenko, Development of models of optimal complexity using Selg-organization theory, Int. J. Comput. Inform. Sci. 8 (2) (1979) 12-21.
    • (1979) Int. J. Comput. Inform. Sci. , vol.8 , Issue.2 , pp. 12-21
    • Ivakhnenko, A.G.1
  • 5
    • 0036529715 scopus 로고    scopus 로고
    • The design of self-organizing polynomial neural networks
    • S.K. Oh, W. Pedrycz, The design of self-organizing polynomial neural networks, Inf. Sci. 141 (2002) 237-258.
    • (2002) Inf. Sci. , vol.141 , pp. 237-258
    • Oh, S.K.1    Pedrycz, W.2
  • 6
    • 0038722717 scopus 로고    scopus 로고
    • Polynomial neural networks architecture: Analysis and design
    • S.K. Oh, W. Pedrycz, B.-J. Park, Polynomial neural networks architecture: analysis and design, Comput. Electr. Eng. 29 (6) (2003) 703-725.
    • (2003) Comput. Electr. Eng. , vol.29 , Issue.6 , pp. 703-725
    • Oh, S.K.1    Pedrycz, W.2    Park, B.-J.3
  • 7
    • 0019056830 scopus 로고
    • Heuristics free group method of data handling algorithm of generating optimal partial polynomials with application to air pollution prediction
    • H. Tamura, T. Kondo, Heuristics free group method of data handling algorithm of generating optimal partial polynomials with application to air pollution prediction, Int. J. Syst. Sci. 11 (1980) 1095-1111.
    • (1980) Int. J. Syst. Sci. , vol.11 , pp. 1095-1111
    • Tamura, H.1    Kondo, T.2
  • 9
    • 0016355478 scopus 로고
    • A new look at statistical model identification
    • H. Akaike, A new look at statistical model identification, IEEE Trans. Autom. Contr. 19 (1974) 716-723.
    • (1974) IEEE Trans. Autom. Contr. , vol.19 , pp. 716-723
    • Akaike, H.1
  • 10
    • 85033517914 scopus 로고
    • A Bayesian extension of the minimum AIC procedure of autoregressive model fitting
    • H. Akaike, A Bayesian extension of the minimum AIC procedure of autoregressive model fitting, Biometrika 16 (1979) 237-242.
    • (1979) Biometrika , vol.16 , pp. 237-242
    • Akaike, H.1
  • 11
    • 0016972878 scopus 로고
    • Sequential GMDH algorithms and its application to river-flow prediction
    • S. Ikeda, M. Ochiai, Y. Sawaragi, Sequential GMDH algorithms and its application to river-flow prediction, IEEE Trans. Syst. Man Cybern. SMC 6 (7) (1976) 473-479.
    • (1976) IEEE Trans. Syst. Man Cybern. SMC , vol.6 , Issue.7 , pp. 473-479
    • Ikeda, S.1    Ochiai, M.2    Sawaragi, Y.3
  • 12
    • 0026116468 scopus 로고
    • Orthogonal least squares algorithm for radial basis function networks
    • S. Chen, C.F. Cowan, P.M. Grant, Orthogonal least squares algorithm for radial basis function networks, IEEE Trans. Neural Networks 2 (2) (1991) 302-309.
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.2    Grant, P.M.3
  • 14
    • 0002907696 scopus 로고
    • The evaluation of fuzzy models derived from experimental data
    • R.M. Tong, The evaluation of fuzzy models derived from experimental data, Fuzzy Sets Syst. 13 (1980) 1-12.
    • (1980) Fuzzy Sets Syst. , vol.13 , pp. 1-12
    • Tong, R.M.1
  • 15
  • 16
    • 0027544110 scopus 로고
    • A fuzzy-logic-based approach to qualitative modeling
    • M. Sugeno, T. Yasukawa, A fuzzy-logic-based approach to qualitative modeling, IEEE Trans. Fuzzy Syst. 1 (1) (1993) 7-31.
    • (1993) IEEE Trans. Fuzzy Syst. , vol.1 , Issue.1 , pp. 7-31
    • Sugeno, M.1    Yasukawa, T.2
  • 17
    • 0023209327 scopus 로고
    • Fuzzy model identification self-learning for dynamic system
    • C.W. Xu, Y. Zailu, Fuzzy model identification self-learning for dynamic system, IEEE Trans. Syst. Man Cybern. SMC 17 (4) (1987) 687-783.
    • (1987) IEEE Trans. Syst. Man Cybern. SMC , vol.17 , Issue.4 , pp. 687-783
    • Xu, C.W.1    Zailu, Y.2
  • 18
    • 0021455631 scopus 로고
    • An identification algorithm in fuzzy relational system
    • W. Pedrycz, An identification algorithm in fuzzy relational system, Fuzzy Sets Syst. 13 (1984) 153-167.
    • (1984) Fuzzy Sets Syst. , vol.13 , pp. 153-167
    • Pedrycz, W.1
  • 19
    • 0000636549 scopus 로고    scopus 로고
    • A clustering algorithm for fuzzy model identification
    • J.Q. Chen, Y.G. Xi, Z.J. Zhang, A clustering algorithm for fuzzy model identification, Fuzzy Sets Syst. 98 (1998) 319-329.
    • (1998) Fuzzy Sets Syst. , vol.98 , pp. 319-329
    • Chen, J.Q.1    Xi, Y.G.2    Zhang, Z.J.3
  • 20
    • 0000212165 scopus 로고    scopus 로고
    • About the use of fuzzy clustering techniques for fuzzy model identification
    • A.F. Gomez-Skarmeta, M. Delgado, M.A. Vila, About the use of fuzzy clustering techniques for fuzzy model identification, Fuzzy Sets Syst. 106 (1999) 190-197.
    • (1999) Fuzzy Sets Syst. , vol.106 , pp. 190-197
    • Gomez-Skarmeta, A.F.1    Delgado, M.2    Vila, M.A.3
  • 21
    • 0034300570 scopus 로고    scopus 로고
    • Identification of fuzzy systems by means of an auto-tuning algorithm and its application to nonlinear systems
    • S.K. Oh, W. Pedrycz, Identification of fuzzy systems by means of an auto-tuning algorithm and its application to nonlinear systems, Fuzzy Sets Syst. 115 (2) (2000) 205-230.
    • (2000) Fuzzy Sets Syst. , vol.115 , Issue.2 , pp. 205-230
    • Oh, S.K.1    Pedrycz, W.2
  • 23
    • 0032164985 scopus 로고    scopus 로고
    • A simple identified Sugeno-type fuzzy model via double clustering
    • E.T. Kim, H. Lee, M.K. Park, M. Park, A simple identified Sugeno-type fuzzy model via double clustering, Inf. Sci. 110 (1998) 25-39.
    • (1998) Inf. Sci. , vol.110 , pp. 25-39
    • Kim, E.T.1    Lee, H.2    Park, M.K.3    Park, M.4
  • 24
    • 0001034441 scopus 로고    scopus 로고
    • A new artificial neural networks based fuzzy inference system with moving consequents in if-then rules and selected applications
    • J. Leski, E. Czogala, A new artificial neural networks based fuzzy inference system with moving consequents in if-then rules and selected applications, Fuzzy Sets Syst. 108 (1999) 289-297.
    • (1999) Fuzzy Sets Syst. , vol.108 , pp. 289-297
    • Leski, J.1    Czogala, E.2
  • 25
    • 84941531642 scopus 로고
    • A new approach to fuzzy-neural modeling
    • Y. Lin, G.A. Cunningham, A new approach to fuzzy-neural modeling, IEEE Trans Fuzzy Syst. 3 (2) (1995) 190-197.
    • (1995) IEEE Trans Fuzzy Syst. , vol.3 , Issue.2 , pp. 190-197
    • Lin, Y.1    Cunningham, G.A.2
  • 26
    • 0026927202 scopus 로고
    • Fuzzy min-max neural networks-part I: Classification
    • P.K. Simpson, Fuzzy min-max neural networks-Part I: Classification, IEEE Trans. Neural Networks 3 (1992) 776-786.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 776-786
    • Simpson, P.K.1
  • 27
    • 0032144971 scopus 로고    scopus 로고
    • A neural network classifier with disjunctive fuzzy information
    • H.M. Lee, A neural network classifier with disjunctive fuzzy information, Neural Networks 11 (6) (1998) 1113-1125.
    • (1998) Neural Networks , vol.11 , Issue.6 , pp. 1113-1125
    • Lee, H.M.1
  • 28
    • 0035359279 scopus 로고    scopus 로고
    • An efficient fuzzy classifier with feature selection based on fuzzy entropy
    • H.M. Lee, C.M. Chen, J.M. Chen, Y.L. You, An efficient fuzzy classifier with feature selection based on fuzzy entropy, IEEE Trans. Syst., Man. Cybern. B 31 (2001) 426-432.
    • (2001) IEEE Trans. Syst., Man. Cybern. B , vol.31 , pp. 426-432
    • Lee, H.M.1    Chen, C.M.2    Chen, J.M.3    You, Y.L.4
  • 29
    • 0033078158 scopus 로고    scopus 로고
    • A new method for constructing membership functions and fuzzy rules from training examples
    • T.P. Wu, S.M. Chen, A new method for constructing membership functions and fuzzy rules from training examples, IEEE Trans. Syst. Man. Cybern. B 29 (1999) 25-40.
    • (1999) IEEE Trans. Syst. Man. Cybern. B , vol.29 , pp. 25-40
    • Wu, T.P.1    Chen, S.M.2
  • 30
    • 0036902547 scopus 로고    scopus 로고
    • Self-adaptive neuro-fuzzy inference systems for classification applications
    • J.-S. Wang, C.S.G. Lee, Self-adaptive neuro-fuzzy inference systems for classification applications, IEEE Trans. Fuzzy Systems 10 (6) (2002) 790-802.
    • (2002) IEEE Trans. Fuzzy Systems , vol.10 , Issue.6 , pp. 790-802
    • Wang, J.-S.1    Lee, C.S.G.2
  • 31
    • 0034294243 scopus 로고    scopus 로고
    • GA-fuzzy modeling and classification: Complexity and performance
    • M. Setnes, H. Roubos, GA-fuzzy modeling and classification: complexity and performance, IEEE Trans. Fuzzy Syst. 8 (5) (2000) 509-522.
    • (2000) IEEE Trans. Fuzzy Syst. , vol.8 , Issue.5 , pp. 509-522
    • Setnes, M.1    Roubos, H.2
  • 32
    • 0000719509 scopus 로고    scopus 로고
    • Voting in fuzzy rule based systems for pattern classification problems
    • H. Ishibuchi, T. Nakashima, Voting in fuzzy rule based systems for pattern classification problems, Fuzzy Sets Syst. 103 (1999) 223-238.
    • (1999) Fuzzy Sets Syst. , vol.103 , pp. 223-238
    • Ishibuchi, H.1    Nakashima, T.2
  • 34
    • 0028582717 scopus 로고
    • Using real-valued genetic algorithms to evolve rule sets for classification
    • Orlland, FL, June
    • A.L. Corcoran, S. Sen, Using real-valued genetic algorithms to evolve rule sets for classification, in: Proc. 1st IEEE Conf. Evolutionary Computation, Orlland, FL, June 1994, pp. 120-124.
    • (1994) Proc. 1st IEEE Conf. Evolutionary Computation , pp. 120-124
    • Corcoran, A.L.1    Sen, S.2
  • 35
    • 0032597810 scopus 로고    scopus 로고
    • Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems
    • H. Ishibuchi, T. Nakashima, T. Murata, Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems, IEEE Trans. Syst. Man. Cybern. B 29 (1999) 601-618.
    • (1999) IEEE Trans. Syst. Man. Cybern. B , vol.29 , pp. 601-618
    • Ishibuchi, H.1    Nakashima, T.2    Murata, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.