메뉴 건너뛰기




Volumn 161, Issue 1, 2005, Pages 69-91

On the blow-up of finite difference solutions to the heat-diffusion equation with semilinear dynamical boundary conditions

Author keywords

Blow up; Blow up rate; Blow up set; Convergence; Dynamical boundary conditions; Finite difference schemes; Heat diffusion equation

Indexed keywords

APPROXIMATION THEORY; BOUNDARY CONDITIONS; CONVERGENCE OF NUMERICAL METHODS; PROBLEM SOLVING; SEMICONDUCTOR DEVICES; THEOREM PROVING; THERMAL DIFFUSION;

EID: 9544230688     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2003.12.010     Document Type: Article
Times cited : (9)

References (24)
  • 1
    • 0007369635 scopus 로고    scopus 로고
    • Global existence and blow up in a parabolic problem with nonlocal dynamical boundary conditions
    • D. Andreuci, R. Gianni, Global existence and blow up in a parabolic problem with nonlocal dynamical boundary conditions, Adv. Diff. Eqs. 1 (5) (1996) 729-752.
    • (1996) Adv. Diff. Eqs. , vol.1 , Issue.5 , pp. 729-752
    • Andreuci, D.1    Gianni, R.2
  • 2
    • 0032155992 scopus 로고    scopus 로고
    • Blow-up in diffusion equations: A survey
    • C. Bandle, H. Brunner, Blow-up in diffusion equations: A survey, J. Comput. Appl. Math. 97 (1998) 3-22.
    • (1998) J. Comput. Appl. Math. , vol.97 , pp. 3-22
    • Bandle, C.1    Brunner, H.2
  • 4
    • 84972497956 scopus 로고
    • 1+α in N-dimensional balls
    • 1+α in N-dimensional balls, Hokkaido Math. J. 21 (1992) 447-474.
    • (1992) Hokkaido Math. J. , vol.21 , pp. 447-474
    • Chen, J.G.1
  • 5
    • 0010601614 scopus 로고    scopus 로고
    • Some recent results on blow-up on the boundary for the heat equation
    • M. Chlebik, M. Fila, Some recent results on blow-up on the boundary for the heat equation, Banach Center Publ. 52 (2000) 61-71.
    • (2000) Banach Center Publ. , vol.52 , pp. 61-71
    • Chlebik, M.1    Fila, M.2
  • 8
    • 85113037425 scopus 로고
    • Numerical analysis of the blowup regimes of combustion of two-component nonlinear heat-conducting medium
    • S.N. Dimova, M.S. Kaschiev, M.G. Koleva, D.P. Vassileva, Numerical analysis of the blowup regimes of combustion of two-component nonlinear heat-conducting medium, J. Vych. Math. Math. Phys. 35 (1994) 380-399.
    • (1994) J. Vych. Math. Math. Phys. , vol.35 , pp. 380-399
    • Dimova, S.N.1    Kaschiev, M.S.2    Koleva, M.G.3    Vassileva, D.P.4
  • 9
    • 0032384230 scopus 로고    scopus 로고
    • Numerical approximation of a parabolic problem with a nonlinear boundary condition
    • R.G. Duran, J.I. Etcheverry, J.D. Rossi, Numerical approximation of a parabolic problem with a nonlinear boundary condition, Discrete and Continuous Dynam. Syst. 4 (1998) 497-506.
    • (1998) Discrete and Continuous Dynam. Syst. , vol.4 , pp. 497-506
    • Duran, R.G.1    Etcheverry, J.I.2    Rossi, J.D.3
  • 10
    • 0000401812 scopus 로고
    • Quasilinear parabolic system with dynamical boundary conditions
    • J. Escher, Quasilinear parabolic system with dynamical boundary conditions, Comn. P.D.E. 18 (1993) 1309-1364.
    • (1993) Comn. P.D.E. , vol.18 , pp. 1309-1364
    • Escher, J.1
  • 11
    • 0037490700 scopus 로고    scopus 로고
    • An adaptive numerical scheme for a parabolic problem with blow-up
    • R. Ferreira, P. Groisman, J. Rossi, An adaptive numerical scheme for a parabolic problem with blow-up, IMA J. of Numerical Analysis 23 (2003) 439-463.
    • (2003) IMA J. of Numerical Analysis , vol.23 , pp. 439-463
    • Ferreira, R.1    Groisman, P.2    Rossi, J.3
  • 12
    • 3042714860 scopus 로고    scopus 로고
    • Large time behavior of solutions of semilinear parabolic equation with nonlinear dynamical boundary conditions
    • Birkhuser, Basel
    • M. Fila, P. Quittner, Large time behavior of solutions of semilinear parabolic equation with nonlinear dynamical boundary conditions, in: Topics in Nonlinear Analysis. Progr. Nonl. Diff. Eq. Appl., vol. 35, Birkhuser, Basel, 1999, pp. 251-272.
    • (1999) Topics in Nonlinear Analysis. Progr. Nonl. Diff. Eq. Appl. , vol.35 , pp. 251-272
    • Fila, M.1    Quittner, P.2
  • 13
    • 0023573724 scopus 로고
    • Initial boundary value problems from semiconductor device theory
    • K. Gröger, Initial boundary value problems from semiconductor device theory, ZAMM 67 (1987) 345-355.
    • (1987) ZAMM , vol.67 , pp. 345-355
    • Gröger, K.1
  • 14
    • 0004401647 scopus 로고
    • Nonlinear parabolic equations with mixed nonlinear and nonstationary boundary conditions
    • J. Kacur, Nonlinear parabolic equations with mixed nonlinear and nonstationary boundary conditions, Math. Slovaca 30 (1990) 213-237.
    • (1990) Math. Slovaca , vol.30 , pp. 213-237
    • Kacur, J.1
  • 15
    • 9544226250 scopus 로고    scopus 로고
    • On the computation of blow-up solutions of parabolic equation with semilinear dynamical boundary conditions
    • M. Koleva, On the computation of blow-up solutions of parabolic equation with semilinear dynamical boundary conditions, Proc. Mith. Inform. 39 (2003) 122-126.
    • (2003) Proc. Mith. Inform. , vol.39 , pp. 122-126
    • Koleva, M.1
  • 17
    • 84972503877 scopus 로고
    • Blow-up for some equations with semilinear dynamical boundary conditions of parabolic and hyperbolic types
    • M. Kirane, Blow-up for some equations with semilinear dynamical boundary conditions of parabolic and hyperbolic types, Hokkaido Math. J. 21 (1992) 221-229.
    • (1992) Hokkaido Math. J. , vol.21 , pp. 221-229
    • Kirane, M.1
  • 21
    • 0028374495 scopus 로고
    • Semi-discretization in time of nonlinear parabolic equations with blow-up of the solution
    • M.-N. Le Roux, Semi-discretization in time of nonlinear parabolic equations with blow-up of the solution, SIAM I. Numer. Anal. 31 (1994) 170-195.
    • (1994) SIAM I. Numer. Anal. , vol.31 , pp. 170-195
    • Le Roux, M.-N.1
  • 22
    • 0003589034 scopus 로고
    • Blow-up in problems for quasilinear parabolic equations
    • Walter de Gruyter Trans., Nauka, Moscow (Original work published in 1987), Berlin (in Russian)
    • A.A. Samarskii, V.A. Galaktionov, B.A. Kurdyumov, A. Mikhailov, Blow-up in problems for quasilinear parabolic equations (Walter de Gruyter Trans., Exposition in Mathematics), vol. 19, Nauka, Moscow, 1987 (Original work published in 1987), Berlin, 1995 (in Russian).
    • (1987) Exposition in Mathematics , vol.19
    • Samarskii, A.A.1    Galaktionov, V.A.2    Kurdyumov, B.A.3    Mikhailov, A.4
  • 23
    • 84972578855 scopus 로고
    • A finite difference approach to the number of peaks of solutions for semilinear parabolic problems
    • M. Tabata, A finite difference approach to the number of peaks of solutions for semilinear parabolic problems, J. Math. Soc. Jpn. 32 (1980) 171-192.
    • (1980) J. Math. Soc. Jpn. , vol.32 , pp. 171-192
    • Tabata, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.