메뉴 건너뛰기




Volumn 23, Issue 3, 2003, Pages 439-463

Adaptive numerical schemes for a parabolic problem with blow-up

Author keywords

Adaptive mesh; Heat equation; Nonlinear boundary conditions; Numerical blow up

Indexed keywords

MESH GENERATION; NONLINEAR EQUATIONS; SHOCK PROBLEMS;

EID: 0037490700     PISSN: 02724979     EISSN: None     Source Type: Journal    
DOI: 10.1093/imanum/23.3.439     Document Type: Article
Times cited : (12)

References (31)
  • 1
    • 0030085996 scopus 로고    scopus 로고
    • Blow-up for semidiscretizations of reaction diffusion equations
    • ABIA, L. M., LOPEZ-MARCOS, J. C. & MARTINEZ, J. (1996) Blow-up for semidiscretizations of reaction diffusion equations. Appl. Numer. Math., 20, 145-156.
    • (1996) Appl. Numer. Math. , vol.20 , pp. 145-156
    • Abia, L.M.1    Lopez-Marcos, J.C.2    Martinez, J.3
  • 2
    • 0032044877 scopus 로고    scopus 로고
    • On the blow-up time convergence of semidiscretizations of reaction diffusion equations
    • ABIA, L. M., LOPEZ-MARCOS, J. C. & MARTINEZ, J. (1998) On the blow-up time convergence of semidiscretizations of reaction diffusion equations. Appl. Numer. Math., 26, 399-414.
    • (1998) Appl. Numer. Math. , vol.26 , pp. 399-414
    • Abia, L.M.1    Lopez-Marcos, J.C.2    Martinez, J.3
  • 3
    • 0036052453 scopus 로고    scopus 로고
    • An adaptive time step procedure for a parabolic problem with blow-up
    • ACOSTA, G., DURAN, R. & ROSSI, J. D. (2002a) An adaptive time step procedure for a parabolic problem with blow-up. Computing, 68, 343-373.
    • (2002) Computing , vol.68 , pp. 343-373
    • Acosta, G.1    Duran, R.2    Rossi, J.D.3
  • 4
    • 0042261532 scopus 로고    scopus 로고
    • Numerical approximation of a parabolic problem with a nonlinear boundary condition in several space dimensions
    • ACOSTA, G., FERNANDEZ BONDER, J., GROISMAN, P. & ROSSI, J. D. (2002b) Numerical approximation of a parabolic problem with a nonlinear boundary condition in several space dimensions. Discr. Cont. Dyn. Sys. B, 2, 2002-294.
    • (2002) Discr. Cont. Dyn. Sys. B , vol.2 , pp. 2002-2294
    • Acosta, G.1    Fernandez Bonder, J.2    Groisman, P.3    Rossi, J.D.4
  • 5
    • 0000149393 scopus 로고
    • Numerical analysis of semilinear parabolic problems with blow-up solutions
    • BANDLE, C. & BRUNNER, H. (1994) Numerical analysis of semilinear parabolic problems with blow-up solutions. Rev. Real Acad. Cienc. Exact. Fis. Natur. Madrid., 88, 203-222.
    • (1994) Rev. Real Acad. Cienc. Exact. Fis. Natur. Madrid. , vol.88 , pp. 203-222
    • Bandle, C.1    Brunner, H.2
  • 6
    • 0032155992 scopus 로고    scopus 로고
    • Blow-up in diffusion equations: A survey
    • BANDLE, C. & BRUNNER, H. (1998) Blow-up in diffusion equations: a survey. J. Comp. Appl. Math., 97, 3-22.
    • (1998) J. Comp. Appl. Math. , vol.97 , pp. 3-22
    • Bandle, C.1    Brunner, H.2
  • 7
    • 84990610650 scopus 로고
    • A rescaling algorithm for the numerical calculation of blowing up solutions
    • BERGER, M. & KOHN, R. V. (1988) A rescaling algorithm for the numerical calculation of blowing up solutions. Comm. Pure Appl. Math., 41, 841-863.
    • (1988) Comm. Pure Appl. Math. , vol.41 , pp. 841-863
    • Berger, M.1    Kohn, R.V.2
  • 8
    • 0031642929 scopus 로고    scopus 로고
    • An invariant moving mesh scheme for the nonlinear diffusion equation
    • BUDD, C. & COLLINS, G. (1998) An invariant moving mesh scheme for the nonlinear diffusion equation. Appl. Numer. Math., 26, 23-39.
    • (1998) Appl. Numer. Math. , vol.26 , pp. 23-39
    • Budd, C.1    Collins, G.2
  • 9
    • 0001689908 scopus 로고    scopus 로고
    • New self-similar solutions of the nonlinear Schrödinger equation with moving mesh computations
    • BUDD, C., CHEN, S. & RUSSELL, R. D. (1999) New self-similar solutions of the nonlinear Schrödinger equation with moving mesh computations. J. Comp. Phys., 152, 756-789.
    • (1999) J. Comp. Phys. , vol.152 , pp. 756-789
    • Budd, C.1    Chen, S.2    Russell, R.D.3
  • 10
  • 13
    • 0034299010 scopus 로고    scopus 로고
    • On the blow-up rate for the heat equation with a nonlinear boundary condition
    • CHLEBÍK, M. & FILA, M. (2000) On the blow-up rate for the heat equation with a nonlinear boundary condition. Math. Methods Appl. Sci., 23, 1323-1330.
    • (2000) Math. Methods Appl. Sci. , vol.23 , pp. 1323-1330
    • Chlebík, M.1    Fila, M.2
  • 14
    • 0032384230 scopus 로고    scopus 로고
    • Numerical approximation of a parabolic problem with a nonlinear boundary condition
    • DURAN, R. G., ETCHEVERRY, J. I. & ROSSI, J. D. (1998) Numerical approximation of a parabolic problem with a nonlinear boundary condition. Discr. and Com. Dyn. Sys., 4, 497-506.
    • (1998) Discr. and Com. Dyn. Sys. , vol.4 , pp. 497-506
    • Duran, R.G.1    Etcheverry, J.I.2    Rossi, J.D.3
  • 16
    • 0036000696 scopus 로고    scopus 로고
    • Numerical blow-up for a nonlinear problem with a nonlinear boundary condition
    • FERREIRA, R., GROISMAN, P. & ROSSI, J. D. (2002) Numerical blow-up for a nonlinear problem with a nonlinear boundary condition. Math. Models Methods Appl. Sci. M3AS., 12, 461-484.
    • (2002) Math. Models Methods Appl. Sci. M3AS. , vol.12 , pp. 461-484
    • Ferreira, R.1    Groisman, P.2    Rossi, J.D.3
  • 17
    • 0002023616 scopus 로고    scopus 로고
    • Blow-up on the boundary: A survey
    • S. et al. Janeczko, ed. Banach Center Publ., Warsaw: Polish Academy of Science, Inst. of Math.
    • FILA, M. & FILO, J. (1996) Blow-up on the boundary: A survey. Singularities and Differential Equations (S. et al. Janeczko, ed.). Banach Center Publ., Vol. 33. Warsaw: Polish Academy of Science, Inst. of Math., pp. 67-78.
    • (1996) Singularities and Differential Equations , vol.33 , pp. 67-78
    • Fila, M.1    Filo, J.2
  • 18
    • 84988159342 scopus 로고
    • The blowup rate for the heat equation with a nonlinear boundary condition
    • FILA, M. & QUITTNER, P. (1991) The blowup rate for the heat equation with a nonlinear boundary condition. Math. Methods Appl. Sci., 14, 197-205.
    • (1991) Math. Methods Appl. Sci. , vol.14 , pp. 197-205
    • Fila, M.1    Quittner, P.2
  • 20
    • 0028446372 scopus 로고
    • Moving mesh partial differential equations (MMPDEs) based on the equidistribution principle
    • HUANG, W., REN, Y. & RUSSELL, R. D. (1994) Moving mesh partial differential equations (MMPDEs) based on the equidistribution principle. SIAM J. Numer. Anal., 31, 709-730.
    • (1994) SIAM J. Numer. Anal. , vol.31 , pp. 709-730
    • Huang, W.1    Ren, Y.2    Russell, R.D.3
  • 21
    • 84968468748 scopus 로고
    • The profile near blowup time for solution of the heat equation with a nonlinear boundary condition
    • Hu, B. & YIN, H. M. (1994) The profile near blowup time for solution of the heat equation with a nonlinear boundary condition. Trans. Amer. Math. Soc., 346, 117-135.
    • (1994) Trans. Amer. Math. Soc. , vol.346 , pp. 117-135
    • Hu, B.1    Yin, H.M.2
  • 22
    • 0028374495 scopus 로고
    • Semidiscretizations in time of nonlinear parabolic equations with blow-up of the solutions
    • LE Roux, M. N. (1994) Semidiscretizations in time of nonlinear parabolic equations with blow-up of the solutions. SIAM J. Numer. Anal., 31, 170-195.
    • (1994) SIAM J. Numer. Anal. , vol.31 , pp. 170-195
    • Le Roux, M.N.1
  • 23
    • 0025442951 scopus 로고
    • The role of critical exponents in blow up theorems
    • LEVINE, H. A. (1990) The role of critical exponents in blow up theorems. SIAM Rev., 32, 262-288.
    • (1990) SIAM Rev. , vol.32 , pp. 262-288
    • Levine, H.A.1
  • 24
    • 0000982445 scopus 로고
    • Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time
    • LEVINE, H. A. & PAYNE, L. E (1974) Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time. J. Differential Equations, 16, 319-334.
    • (1974) J. Differential Equations , vol.16 , pp. 319-334
    • Levine, H.A.1    Payne, L.E.2
  • 26
    • 0001640207 scopus 로고
    • Finite element analysis of the semilinear heat equation of blow-up type
    • J.J.H. Miller, ed. London: Academic Press
    • NAKAGAWA, T. & USHIJIMA, T. (1977) Finite element analysis of the semilinear heat equation of blow-up type. Topics in Numerical Analysis III. (J.J.H. Miller, ed.). London: Academic Press, pp. 275-291.
    • (1977) Topics in Numerical Analysis III. , pp. 275-291
    • Nakagawa, T.1    Ushijima, T.2
  • 28
    • 0001264525 scopus 로고    scopus 로고
    • Blow-up results and localization of blow-up points in an N - Dimensional smooth domain
    • RIAL, D. F. & ROSSI, J. D. (1997) Blow-up results and localization of blow-up points in an N - dimensional smooth domain. Duke Math. J., 88, 391-405.
    • (1997) Duke Math. J. , vol.88 , pp. 391-405
    • Rial, D.F.1    Rossi, J.D.2
  • 29
    • 0030826837 scopus 로고    scopus 로고
    • The blow-up rate for a system of heat equations with nontrivial coupling at the boundary
    • ROSSI, J. D. (1997) The blow-up rate for a system of heat equations with nontrivial coupling at the boundary. Math. Methods Appl. Sci., 20, 1-11.
    • (1997) Math. Methods Appl. Sci. , vol.20 , pp. 1-11
    • Rossi, J.D.1
  • 31
    • 0003088926 scopus 로고
    • On existence and nonexistence in the large of solutions of parabolic differential equations with a nonlinear boundary condition
    • WALTER, W. (1975) On existence and nonexistence in the large of solutions of parabolic differential equations with a nonlinear boundary condition. SIAM J. Math. Anal., 6, 85-90.
    • (1975) SIAM J. Math. Anal. , vol.6 , pp. 85-90
    • Walter, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.