메뉴 건너뛰기




Volumn 3120, Issue , 2004, Pages 457-471

On the convergence of spectral clustering on random samples: The normalized case

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; DATA ACQUISITION; EIGENVALUES AND EIGENFUNCTIONS; GRAPH THEORY; LAPLACE TRANSFORMS; MATRIX ALGEBRA; PROBABILITY DISTRIBUTIONS; PROBLEM SOLVING;

EID: 9444238022     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/978-3-540-27819-1_32     Document Type: Conference Paper
Times cited : (41)

References (30)
  • 2
    • 3142725535 scopus 로고    scopus 로고
    • Semi-supervised learning on Riemannian manifolds
    • to appear
    • M. Belkin and P. Niyogi. Semi-supervised learning on Riemannian manifolds. Machine Learning, to appear. Available at http://people.cs.uchicago. edu/\char126\relaxmisha.
    • Machine Learning
    • Belkin, M.1    Niyogi, P.2
  • 6
    • 84898942071 scopus 로고    scopus 로고
    • Measure based regularization
    • S. Thrun, L. Saul, and B. Schölkopf, editors, MIT Press, Cambridge, MA
    • O. Bousquet, O. Chapelle, and M. Hein. Measure based regularization. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.
    • (2004) Advances in Neural Information Processing Systems , vol.16
    • Bousquet, O.1    Chapelle, O.2    Hein, M.3
  • 9
    • 0015661138 scopus 로고
    • Lower bounds for the partitioning of graphs
    • W. E. Donath and A. J. Hoffman. Lower bounds for the partitioning of graphs. IBM J. Res. Develop., 17:420-425, 1973.
    • (1973) IBM J. Res. Develop. , vol.17 , pp. 420-425
    • Donath, W.E.1    Hoffman, A.J.2
  • 10
    • 0001350119 scopus 로고
    • Algebraic connectivity of graphs
    • M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Math. J., 23:298-305, 1973.
    • (1973) Czechoslovak Math. J. , vol.23 , pp. 298-305
    • Fiedler, M.1
  • 12
    • 0026925324 scopus 로고
    • New spectral methods for ratio cut partitioning and clustering
    • L. Hagen and A.B. Kahng. New spectral methods for ratio cut partitioning and clustering. IEEE Trans. Computer-Aided Design, 11(9):1074-1085, 1992.
    • (1992) IEEE Trans. Computer-aided Design , vol.11 , Issue.9 , pp. 1074-1085
    • Hagen, L.1    Kahng, A.B.2
  • 13
    • 0001482122 scopus 로고
    • Consistency of single linkage for high-density clusters
    • J. Hartigan. Consistency of single linkage for high-density clusters. JASA, 76(374): 388-394, 1981.
    • (1981) JASA , vol.76 , Issue.374 , pp. 388-394
    • Hartigan, J.1
  • 14
    • 0000063845 scopus 로고
    • An improved spectral graph partitioning algorithm for mapping parallel computations
    • B. Hendrickson and R. Leland. An improved spectral graph partitioning algorithm for mapping parallel computations. SIAM J. on Scientific Computing, 16:452-469, 1995.
    • (1995) SIAM J. on Scientific Computing , vol.16 , pp. 452-469
    • Hendrickson, B.1    Leland, R.2
  • 15
    • 9444296683 scopus 로고    scopus 로고
    • On clusterings - Good, bad and spectral
    • Computer science Department, Yale University
    • R. Kannan, S. Vempala, and A. Vetta. On clusterings - good, bad and spectral. Technical report, Computer science Department, Yale University, 2000.
    • (2000) Technical Report
    • Kannan, R.1    Vempala, S.2    Vetta, A.3
  • 17
    • 9444244014 scopus 로고    scopus 로고
    • Asymptotics of spectral projections of some random matrices approximating integral operators
    • V. Koltchinskii. Asymptotics of spectral projections of some random matrices approximating integral operators. Progress in Probabilty, 43, 1998.
    • (1998) Progress in Probabilty , vol.43
    • Koltchinskii, V.1
  • 18
    • 4344709031 scopus 로고    scopus 로고
    • Random matrix approximation of spectra of integral operators
    • V. Koltchinskii and E. Giné. Random matrix approximation of spectra of integral operators. Bernoulli, 6(1):113 - 167, 2000.
    • (2000) Bernoulli , vol.6 , Issue.1 , pp. 113-167
    • Koltchinskii, V.1    Giné, E.2
  • 20
    • 0041875229 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • T. Dietterich, S. Becker, and Z. Ghahramani, editors, MIT Press
    • A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In T. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14 MIT Press, 2001.
    • (2001) Advances in Neural Information Processing Systems , vol.14
    • Ng, A.1    Jordan, M.2    Weiss, Y.3
  • 22
    • 0000963889 scopus 로고
    • Strong consistency of k-means clustering
    • D. Pollard. Strong consistency of k-means clustering. Annals of Statistics, 9(1):135-140, 1981.
    • (1981) Annals of Statistics , vol.9 , Issue.1 , pp. 135-140
    • Pollard, D.1
  • 25
    • 0029197190 scopus 로고
    • An improved spectral bisection algorithm and its application to dynamic load balancing
    • R. Van Driessche and D. Roose. An improved spectral bisection algorithm and its application to dynamic load balancing. Parallel Comput., 21(1), 1995.
    • (1995) Parallel Comput. , vol.21 , Issue.1
    • Van Driessche, R.1    Roose, D.2
  • 26
    • 84862475313 scopus 로고    scopus 로고
    • On the convergence of spectral clustering on random samples: The unnormalized case
    • Submitted to
    • U. von Luxburg, O. Bousquet, and M. Belkin. On the convergence of spectral clustering on random samples: the unnormalized case. Submitted to DAGM 2004, available at http://www.kyb.tuebingen.mpg.de/~ule.
    • DAGM 2004
    • Von Luxburg, U.1    Bousquet, O.2    Belkin, M.3
  • 29
    • 0039722607 scopus 로고    scopus 로고
    • The effect of the input density distribution on kernelbased classifiers
    • P. Langley, editor, Morgan Kaufmann, San Francisco
    • C. K. I. Williams and M. Seeger. The effect of the input density distribution on kernelbased classifiers. In P. Langley, editor, Proceedings of the 17th International Conference on Machine Learning, pages 1159-1166. Morgan Kaufmann, San Francisco, 2000.
    • (2000) Proceedings of the 17th International Conference on Machine Learning , pp. 1159-1166
    • Williams, C.K.I.1    Seeger, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.