메뉴 건너뛰기




Volumn 2972, Issue , 2004, Pages 527-535

Bayes-N: An algorithm for learning Bayesian networks from data using local measures of information gain applied to classification problems

Author keywords

Bayesian networks; Classification; Data mining; Machine learning; MDL

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA MINING; GRAPH THEORY; LEARNING ALGORITHMS; MATHEMATICAL MODELS; PROBABILITY DISTRIBUTIONS; PROBLEM SOLVING; ALGORITHMS; ARTIFICIAL INTELLIGENCE; CLASSIFIERS; DIRECTED GRAPHS; LEARNING SYSTEMS;

EID: 9444231147     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/978-3-540-24694-7_54     Document Type: Conference Paper
Times cited : (5)

References (25)
  • 6
    • 34548509666 scopus 로고
    • An algorithm for the induction of probabilistic networks from data
    • Cuernavaca, Morelos, Mexico, Limusa
    • M. Martinez-Morales, An Algorithm for the Induction of Probabilistic Networks from Data. XII Reunion National de Inteligencia Artificial, ITESM, Cuernavaca, Morelos, Mexico, Limusa. (1995).
    • (1995) XII Reunion National De Inteligencia Artificial, ITESM
    • Martinez-Morales, M.1
  • 9
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G.F. Cooper, and E. Herskovits, A Bayesian Method for the induction of probabilistic networks from data. Machine Learning, 9 (pp. 309-347), (1992).
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 17
    • 0028931857 scopus 로고
    • Multiple significance tests: The Bonferroni method
    • J.M. Bland, and D.G. Altman, Multiple significance tests: the Bonferroni method. BMJ; 310: 170, (1995).
    • (1995) BMJ , vol.310 , pp. 170
    • Bland, J.M.1    Altman, D.G.2
  • 19
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Montreal, Canada, Morgan Kaufmann
    • R. Kohavi, A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. 14th International Joint Conference on Artificial Intelligence IJCAI'95, Montreal, Canada, Morgan Kaufmann. (1995).
    • (1995) 14th International Joint Conference on Artificial Intelligence IJCAI'95
    • Kohavi, R.1
  • 22
    • 0031837394 scopus 로고    scopus 로고
    • Evaluation of a statistically derived decision tree for the cytodiagnosis of fine needle aspirates of the breast (FNAB)
    • S. S. Cross, A. K. Dube, et al. Evaluation of a statistically derived decision tree for the cytodiagnosis of fine needle aspirates of the breast (FNAB). Cytopathology 8: 178-187. (1998).
    • (1998) Cytopathology , vol.8 , pp. 178-187
    • Cross, S.S.1    Dube, A.K.2
  • 23
    • 33845224110 scopus 로고    scopus 로고
    • Which decision support technologies are appropriate for the cytodiagnosis of breast cancer? Artificial intelligence techniques in breast cancer diagnosis and prognosis
    • A. Jain, A. Jain, S. Jain and L. Jain
    • S. S. Cross, J. Downs, et al. Which Decision Support Technologies Are Appropriate for the Cytodiagnosis of Breast Cancer? Artificial Intelligence Techniques in Breast Cancer Diagnosis and Prognosis. A. Jain, A. Jain, S. Jain and L. Jain, World Scientific. 39: 265-295. (2000).
    • (2000) World Scientific , vol.39 , pp. 265-295
    • Cross, S.S.1    Downs, J.2
  • 24
    • 9444227160 scopus 로고    scopus 로고
    • Norsys. Norsys Software Corporation, Electronic source: http://www.norsys.com. (2001).
    • (2001) Electronic Source
  • 25
    • 0003846045 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Microsoft Research, Redmond, Washington
    • D. Heckerman, D. Geiger, et al. Learning Bayesian Networks: The combination of knowledge and statistical data, Technical Report MSR-TR-94-09, Microsoft Research, Redmond, Washington, (1994).
    • (1994) Technical Report , vol.MSR-TR-94-09
    • Heckerman, D.1    Geiger, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.