메뉴 건너뛰기




Volumn 18, Issue 1, 2004, Pages 29-39

A new approach to self-organizing multi-layer fuzzy polynomial neural networks based on genetic optimization

Author keywords

Fuzzy polynomial neural networks; Fuzzy polynomial neuron; Genetic optimization; Multi layer perceptron

Indexed keywords

DATA HANDLING; EVOLUTIONARY ALGORITHMS; FUZZY CONTROL; FUZZY SETS; GENETIC ALGORITHMS; KNOWLEDGE BASED SYSTEMS; POLYNOMIALS; STRUCTURAL OPTIMIZATION;

EID: 9344232002     PISSN: 14740346     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.aei.2004.05.001     Document Type: Article
Times cited : (10)

References (23)
  • 1
    • 0030196823 scopus 로고    scopus 로고
    • Comparison of adaptive methods for function estimation from samples
    • Cherkassky V, Gehring D, Mulier F. Comparison of adaptive methods for function estimation from samples. IEEE Trans Neural Netw 1996; 7:969-84.
    • (1996) IEEE Trans Neural Netw , vol.7 , pp. 969-984
    • Cherkassky, V.1    Gehring, D.2    Mulier, F.3
  • 3
    • 0029370886 scopus 로고
    • Neural networks and abductive networks for chemical sensor signals: A case comparison
    • Sommer V, Tobias P, Kohl D, Sundgren H, Lundstrom L. Neural networks and abductive networks for chemical sensor signals: a case comparison. Sensors Actuators 1995;28:217-22.
    • (1995) Sensors Actuators , vol.28 , pp. 217-222
    • Sommer, V.1    Tobias, P.2    Kohl, D.3    Sundgren, H.4    Lundstrom, L.5
  • 4
    • 0030105463 scopus 로고    scopus 로고
    • A polynomial network modeling approach to a class of large-scale hydraulic systems
    • Kleinsteuber S, Sepehri N. A polynomial network modeling approach to a class of large-scale hydraulic systems. Comput Electr Eng 1996; 22:151-68.
    • (1996) Comput Electr Eng , vol.22 , pp. 151-168
    • Kleinsteuber, S.1    Sepehri, N.2
  • 6
    • 0742320761 scopus 로고    scopus 로고
    • Self-organizing polynomial neural networks based on PNs or FPNs: Analysis and design
    • Oh S-K, Pedrycz W. Self-organizing polynomial neural networks based on PNs or FPNs: analysis and design. Fuzzy Sets Syst 2004; 142(2):163-98.
    • (2004) Fuzzy Sets Syst , vol.142 , Issue.2 , pp. 163-198
    • Oh, S.-K.1    Pedrycz, W.2
  • 8
    • 0008089137 scopus 로고
    • Are genetic algorithms function optimizers?
    • Manner R, Manderick B, editors. Amsterdam: North-Holland
    • De Jong KA. Are genetic algorithms function optimizers?, In: Manner R, Manderick B, editors. Parallel problem solving from nature 2, Amsterdam: North-Holland; 1992.
    • (1992) Parallel Problem Solving from Nature , vol.2
    • De Jong, K.A.1
  • 9
    • 27744519316 scopus 로고    scopus 로고
    • Fuzzy polynomial neuron-based self-organizing neural networks
    • Oh S-K, Pedrycz W. Fuzzy polynomial neuron-based self-organizing neural networks. Int J Gen Syst 2003;32(3):237-50.
    • (2003) Int J Gen Syst , vol.32 , Issue.3 , pp. 237-250
    • Oh, S.-K.1    Pedrycz, W.2
  • 10
    • 0026943536 scopus 로고
    • Generating fuzzy rules from numerical data with applications
    • Wang LX, Mendel JM. Generating fuzzy rules from numerical data with applications. IEEE Trans Syst Man Cybern 1992;22(6): 1414-27.
    • (1992) IEEE Trans Syst Man Cybern , vol.22 , Issue.6 , pp. 1414-1427
    • Wang, L.X.1    Mendel, J.M.2
  • 11
    • 0003093755 scopus 로고
    • Predicting the Mackey-Glass time series with cascade-correlation learning
    • Touretzky D, Hinton G, Sejnowski T, editors. Carnegie Mellon University
    • Crowder IIIRS. Predicting the Mackey-Glass time series with cascade-correlation learning. In: Touretzky D, Hinton G, Sejnowski T, editors. Proceedings of the 1990 Connectionist Models Summer School. Carnegie Mellon University; 1990. p. 117-23.
    • (1990) Proceedings of the 1990 Connectionist Models Summer School , pp. 117-123
    • Crowder III, R.S.1
  • 12
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • Jang JSR. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 1993;23(3):665-85.
    • (1993) IEEE Trans Syst Man Cybern , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 13
    • 0032301756 scopus 로고    scopus 로고
    • Predicting a chaotic time series using a fuzzy neural network
    • Maguire LP, Roche B, McGinnity TM, McDaid LJ. Predicting a chaotic time series using a fuzzy neural network. Inf Sci 1998;112: 125-36.
    • (1998) Inf Sci , vol.112 , pp. 125-136
    • Maguire, L.P.1    Roche, B.2    McGinnity, T.M.3    McDaid, L.J.4
  • 14
    • 0040949854 scopus 로고    scopus 로고
    • Automatic structure and parameter training methods for modeling of mechanical systems by recurrent neural networks
    • James Li C, Huang T-Y. Automatic structure and parameter training methods for modeling of mechanical systems by recurrent neural networks. Appl Math Model 1999;23:933-44.
    • (1999) Appl Math Model , vol.23 , pp. 933-944
    • James, L.C.1    Huang, T.-Y.2
  • 15
    • 9344244023 scopus 로고    scopus 로고
    • Self-organizing neural networks with fuzzy polynomial neurons
    • Oh S-K, Pedrycz W, Ahn T-C. Self-organizing neural networks with fuzzy polynomial neurons. Appl Soft Comput 2002;2(1): 1-10.
    • (2002) Appl Soft Comput , vol.2 , Issue.1 , pp. 1-10
    • Oh, S.-K.1    Pedrycz, W.2    Ahn, T.-C.3
  • 16
    • 0003645482 scopus 로고
    • Non-linear signal processing using neural networks: Prediction and system modeling
    • Los Alamos, NM: Los Alamos National Networks
    • Lapedes AS, Farber R. Non-linear signal processing using neural networks: prediction and system modeling. Technical report LA-UR-87-2662, Los Alamos, NM: Los Alamos National Networks; 1987. pp. 87545.
    • (1987) Technical Report , vol.LA-UR-87-2662 , pp. 87545
    • Lapedes, A.S.1    Farber, R.2
  • 17
    • 0017714604 scopus 로고
    • Oscillation and chaos in physiological control systems
    • Mackey MC, Glass L. Oscillation and chaos in physiological control systems. Science 1977;197:287-9.
    • (1977) Science , vol.197 , pp. 287-289
    • Mackey, M.C.1    Glass, L.2
  • 18
    • 0036529715 scopus 로고    scopus 로고
    • The design of self-organizing polynomial neural networks
    • Oh S-K, Pedrycz W. The design of self-organizing polynomial neural networks. Inf Sci 2002;141:237-58.
    • (2002) Inf Sci , vol.141 , pp. 237-258
    • Oh, S.-K.1    Pedrycz, W.2
  • 19
    • 0038722717 scopus 로고    scopus 로고
    • Polynomial neural networks architecture: Analysis and design
    • Oh S-K, Pedrycz W, Park B-J. Polynomial neural networks architecture: analysis and design. Comput Electr Eng 2003;29(6): 703-25.
    • (2003) Comput Electr Eng , vol.29 , Issue.6 , pp. 703-725
    • Oh, S.-K.1    Pedrycz, W.2    Park, B.-J.3
  • 20
    • 0042594105 scopus 로고
    • Prediction of gas turbine NOx emissions using polynomial neural network
    • Atlanta: Georgia Institute of Technology
    • Vachtsevanos G, Ramani V, Hwang TW. Prediction of gas turbine NOx emissions using polynomial neural network. Technical report, Atlanta: Georgia Institute of Technology; 1995.
    • (1995) Technical Report
    • Vachtsevanos, G.1    Ramani, V.2    Hwang, T.W.3
  • 21
    • 9344265713 scopus 로고    scopus 로고
    • A thesis of emission pattern model about the atmosphere pollution material of a power plant
    • Electrical Engineering and Science Research Institute [in Korean]
    • Oh S-K, Ahn T-C. A thesis of emission pattern model about the atmosphere pollution material of a power plant. Technical Report, Electrical Engineering and Science Research Institute; 1997. [in Korean].
    • (1997) Technical Report
    • Oh, S.-K.1    Ahn, T.-C.2
  • 22
    • 0043092359 scopus 로고    scopus 로고
    • Hybrid identification in fuzzy-neural networks
    • Oh S-K, Pedrycz W, Park H-S. Hybrid identification in fuzzy-neural networks. Fuzzy Sets Syst 2003;138(2):399-426.
    • (2003) Fuzzy Sets Syst , vol.138 , Issue.2 , pp. 399-426
    • Oh, S.-K.1    Pedrycz, W.2    Park, H.-S.3
  • 23
    • 0344493899 scopus 로고    scopus 로고
    • Rule-based Multi-FNN identification with the aid of evolutionary fuzzy granulation
    • Oh S-K, Pedrycz W, Park H-S. Rule-based Multi-FNN identification with the aid of evolutionary fuzzy granulation. J Knowl-Based Syst 2004;17(1):1-13.
    • (2004) J Knowl-based Syst , vol.17 , Issue.1 , pp. 1-13
    • Oh, S.-K.1    Pedrycz, W.2    Park, H.-S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.