-
1
-
-
0037084478
-
Eigenvalue of boundary value problem for the one-dimensional p-Laplacian
-
R.P. Agarwal H.S. Lü D. O'Regan Eigenvalue of boundary value problem for the one-dimensional p-Laplacian J. Math. Anal. Appl. 266 2002 383-400
-
(2002)
J. Math. Anal. Appl.
, vol.266
, pp. 383-400
-
-
Agarwal, R.P.1
Lü, H.S.2
O'Regan, D.3
-
3
-
-
0037439478
-
Existence of three positive pseudo-symmetric solutions for a one-dimensional p-Laplacian
-
R.I. Avery J. Henderson Existence of three positive pseudo-symmetric solutions for a one-dimensional p-Laplacian J. Math. Anal. Appl. 277 2003 395-404
-
(2003)
J. Math. Anal. Appl.
, vol.277
, pp. 395-404
-
-
Avery, R.I.1
Henderson, J.2
-
4
-
-
0035426671
-
Three positive fixed points of nonlinear operators on ordered Banach spaces
-
R.I. Avery A.C. Peterson Three positive fixed points of nonlinear operators on ordered Banach spaces Comput. Math. Appl. 42 2001 313-322
-
(2001)
Comput. Math. Appl.
, vol.42
, pp. 313-322
-
-
Avery, R.I.1
Peterson, A.C.2
-
5
-
-
0002413536
-
A homotopic deformation along p of a Leray-Schauder degree result and existence for (|u′|p-2u′)′+f(t,u)=0, u(0)=u(1)=0,p>1
-
M.A. Del Pino M. Elgueta R. Manásevich A homotopic deformation along p of a Leray-Schauder degree result and existence for (|u′|p-2u′)′ + f(t,u)=0 , u(0) = u(1) = 0 , p > 1 J. Differential Equations 80 1989 1-13
-
(1989)
J. Differential Equations
, vol.80
, pp. 1-13
-
-
Del Pino, M.A.1
Elgueta, M.2
Manásevich, R.3
-
6
-
-
31244435334
-
Multiple positive solutions for one-dimensional p-Laplacian boundary value problems
-
X.M. He W.G. Ge Multiple positive solutions for one-dimensional p-Laplacian boundary value problems Appl. Math. Lett. 15 2002 937-943
-
(2002)
Appl. Math. Lett.
, vol.15
, pp. 937-943
-
-
He, X.M.1
Ge, W.G.2
-
7
-
-
8644284425
-
Existence of positive solutions for the one-dimensional p-Laplacian equations
-
in Chinese
-
X.M. He W.G. Ge Existence of positive solutions for the one-dimensional p-Laplacian equations Acta Math. Sinica 46 2003 805-810 in Chinese
-
(2003)
Acta Math. Sinica
, vol.46
, pp. 805-810
-
-
He, X.M.1
Ge, W.G.2
-
8
-
-
0037299425
-
Existence of three solutions for a quasilinear two-point boundary value problem
-
X.M. He W.G. Ge Existence of three solutions for a quasilinear two-point boundary value problem Comput. Math. Appl. 45 2003 765-769
-
(2003)
Comput. Math. Appl.
, vol.45
, pp. 765-769
-
-
He, X.M.1
Ge, W.G.2
-
9
-
-
0343826010
-
Multiple positive solutions for the one-dimensional p-Laplacian
-
L.B. Kong J.Y. Wang Multiple positive solutions for the one-dimensional p-Laplacian Nonlinear Anal. 42 2000 1327-1333
-
(2000)
Nonlinear Anal.
, vol.42
, pp. 1327-1333
-
-
Kong, L.B.1
Wang, J.Y.2
-
10
-
-
0037114103
-
Multiple positive solutions for the one-dimensional singular p-Laplacian
-
H.S. Lü D. O'Regan C.K. Zhong Multiple positive solutions for the one-dimensional singular p-Laplacian Appl. Math. Comput. 133 2002 407-422
-
(2002)
Appl. Math. Comput.
, vol.133
, pp. 407-422
-
-
Lü, H.S.1
O'Regan, D.2
Zhong, C.K.3
-
11
-
-
0001588110
-
A note on singular nonlinear boundary value problem for the one-dimensional p-Laplacian
-
H.S. Lü C.K. Zhong A note on singular nonlinear boundary value problem for the one-dimensional p-Laplacian Appl. Math. Lett. 14 2001 189-194
-
(2001)
Appl. Math. Lett.
, vol.14
, pp. 189-194
-
-
Lü, H.S.1
Zhong, C.K.2
-
12
-
-
38249004025
-
Time-mappings and multiplicity of results for the one-dimensional p-Laplacian
-
R. Manásevich F. Zanolin Time-mappings and multiplicity of results for the one-dimensional p-Laplacian Nonlinear Anal. 21 1993 269-291
-
(1993)
Nonlinear Anal.
, vol.21
, pp. 269-291
-
-
Manásevich, R.1
Zanolin, F.2
-
13
-
-
0001662218
-
Some general existence principles and results for ((y′))′=qf(t,y,y′), 0
-
D. O'Regan Some general existence principles and results for ((y′))′ = qf (t ,y ,y′),0
-
(1993)
SIAM J. Math. Appl.
, vol.24
, pp. 648-668
-
-
O'Regan, D.1
-
14
-
-
0037607894
-
Multiplicity results for the 1-dimensional generalized p-Laplacian
-
R. Ubilla Multiplicity results for the 1-dimensional generalized p-Laplacian J. Math. Anal. Appl. 190 1995 611-623
-
(1995)
J. Math. Anal. Appl.
, vol.190
, pp. 611-623
-
-
Ubilla, R.1
-
15
-
-
0040320575
-
Existence of positive solutions for m-Laplacian boundary value problems
-
F.H. Wong Existence of positive solutions for m-Laplacian boundary value problems Appl. Math. Lett. 12 1999 11-17
-
(1999)
Appl. Math. Lett.
, vol.12
, pp. 11-17
-
-
Wong, F.H.1
|