메뉴 건너뛰기




Volumn 300, Issue 2, 2004, Pages 477-490

Multiple positive solutions for some p-Laplacian boundary value problems

Author keywords

Boundary value problem; Fixed point theorem; p Laplacian; Triple positive solutions

Indexed keywords


EID: 8644290150     PISSN: 0022247X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmaa.2004.06.053     Document Type: Article
Times cited : (33)

References (15)
  • 1
    • 0037084478 scopus 로고    scopus 로고
    • Eigenvalue of boundary value problem for the one-dimensional p-Laplacian
    • R.P. Agarwal H.S. Lü D. O'Regan Eigenvalue of boundary value problem for the one-dimensional p-Laplacian J. Math. Anal. Appl. 266 2002 383-400
    • (2002) J. Math. Anal. Appl. , vol.266 , pp. 383-400
    • Agarwal, R.P.1    Lü, H.S.2    O'Regan, D.3
  • 3
    • 0037439478 scopus 로고    scopus 로고
    • Existence of three positive pseudo-symmetric solutions for a one-dimensional p-Laplacian
    • R.I. Avery J. Henderson Existence of three positive pseudo-symmetric solutions for a one-dimensional p-Laplacian J. Math. Anal. Appl. 277 2003 395-404
    • (2003) J. Math. Anal. Appl. , vol.277 , pp. 395-404
    • Avery, R.I.1    Henderson, J.2
  • 4
    • 0035426671 scopus 로고    scopus 로고
    • Three positive fixed points of nonlinear operators on ordered Banach spaces
    • R.I. Avery A.C. Peterson Three positive fixed points of nonlinear operators on ordered Banach spaces Comput. Math. Appl. 42 2001 313-322
    • (2001) Comput. Math. Appl. , vol.42 , pp. 313-322
    • Avery, R.I.1    Peterson, A.C.2
  • 5
    • 0002413536 scopus 로고
    • A homotopic deformation along p of a Leray-Schauder degree result and existence for (|u′|p-2u′)′+f(t,u)=0, u(0)=u(1)=0,p>1
    • M.A. Del Pino M. Elgueta R. Manásevich A homotopic deformation along p of a Leray-Schauder degree result and existence for (|u′|p-2u′)′ + f(t,u)=0 , u(0) = u(1) = 0 , p > 1 J. Differential Equations 80 1989 1-13
    • (1989) J. Differential Equations , vol.80 , pp. 1-13
    • Del Pino, M.A.1    Elgueta, M.2    Manásevich, R.3
  • 6
    • 31244435334 scopus 로고    scopus 로고
    • Multiple positive solutions for one-dimensional p-Laplacian boundary value problems
    • X.M. He W.G. Ge Multiple positive solutions for one-dimensional p-Laplacian boundary value problems Appl. Math. Lett. 15 2002 937-943
    • (2002) Appl. Math. Lett. , vol.15 , pp. 937-943
    • He, X.M.1    Ge, W.G.2
  • 7
    • 8644284425 scopus 로고    scopus 로고
    • Existence of positive solutions for the one-dimensional p-Laplacian equations
    • in Chinese
    • X.M. He W.G. Ge Existence of positive solutions for the one-dimensional p-Laplacian equations Acta Math. Sinica 46 2003 805-810 in Chinese
    • (2003) Acta Math. Sinica , vol.46 , pp. 805-810
    • He, X.M.1    Ge, W.G.2
  • 8
    • 0037299425 scopus 로고    scopus 로고
    • Existence of three solutions for a quasilinear two-point boundary value problem
    • X.M. He W.G. Ge Existence of three solutions for a quasilinear two-point boundary value problem Comput. Math. Appl. 45 2003 765-769
    • (2003) Comput. Math. Appl. , vol.45 , pp. 765-769
    • He, X.M.1    Ge, W.G.2
  • 9
    • 0343826010 scopus 로고    scopus 로고
    • Multiple positive solutions for the one-dimensional p-Laplacian
    • L.B. Kong J.Y. Wang Multiple positive solutions for the one-dimensional p-Laplacian Nonlinear Anal. 42 2000 1327-1333
    • (2000) Nonlinear Anal. , vol.42 , pp. 1327-1333
    • Kong, L.B.1    Wang, J.Y.2
  • 10
    • 0037114103 scopus 로고    scopus 로고
    • Multiple positive solutions for the one-dimensional singular p-Laplacian
    • H.S. Lü D. O'Regan C.K. Zhong Multiple positive solutions for the one-dimensional singular p-Laplacian Appl. Math. Comput. 133 2002 407-422
    • (2002) Appl. Math. Comput. , vol.133 , pp. 407-422
    • Lü, H.S.1    O'Regan, D.2    Zhong, C.K.3
  • 11
    • 0001588110 scopus 로고    scopus 로고
    • A note on singular nonlinear boundary value problem for the one-dimensional p-Laplacian
    • H.S. Lü C.K. Zhong A note on singular nonlinear boundary value problem for the one-dimensional p-Laplacian Appl. Math. Lett. 14 2001 189-194
    • (2001) Appl. Math. Lett. , vol.14 , pp. 189-194
    • Lü, H.S.1    Zhong, C.K.2
  • 12
    • 38249004025 scopus 로고
    • Time-mappings and multiplicity of results for the one-dimensional p-Laplacian
    • R. Manásevich F. Zanolin Time-mappings and multiplicity of results for the one-dimensional p-Laplacian Nonlinear Anal. 21 1993 269-291
    • (1993) Nonlinear Anal. , vol.21 , pp. 269-291
    • Manásevich, R.1    Zanolin, F.2
  • 13
    • 0001662218 scopus 로고
    • Some general existence principles and results for ((y′))′=qf(t,y,y′), 0
    • D. O'Regan Some general existence principles and results for ((y′))′ = qf (t ,y ,y′),0
    • (1993) SIAM J. Math. Appl. , vol.24 , pp. 648-668
    • O'Regan, D.1
  • 14
    • 0037607894 scopus 로고
    • Multiplicity results for the 1-dimensional generalized p-Laplacian
    • R. Ubilla Multiplicity results for the 1-dimensional generalized p-Laplacian J. Math. Anal. Appl. 190 1995 611-623
    • (1995) J. Math. Anal. Appl. , vol.190 , pp. 611-623
    • Ubilla, R.1
  • 15
    • 0040320575 scopus 로고    scopus 로고
    • Existence of positive solutions for m-Laplacian boundary value problems
    • F.H. Wong Existence of positive solutions for m-Laplacian boundary value problems Appl. Math. Lett. 12 1999 11-17
    • (1999) Appl. Math. Lett. , vol.12 , pp. 11-17
    • Wong, F.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.