메뉴 건너뛰기




Volumn 277, Issue 2, 2003, Pages 395-404

Existence of three positive pseudo-symmetric solutions for a one dimensional p-Laplacian

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0037439478     PISSN: 0022247X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0022-247X(02)00308-6     Document Type: Article
Times cited : (91)

References (10)
  • 3
    • 0002418596 scopus 로고    scopus 로고
    • A generalization of the Leggett-Williams fixed point theorem
    • R.I. Avery, A generalization of the Leggett-Williams fixed point theorem, MSR Hot-Line 2 (1998) 9-14.
    • (1998) MSR Hot-Line , vol.2 , pp. 9-14
    • Avery, R.I.1
  • 4
    • 0002377075 scopus 로고    scopus 로고
    • Three symmetric positive solutions for a second order boundary value problem
    • R.I. Avery, J. Henderson, Three symmetric positive solutions for a second order boundary value problem, Appl. Math. Lett. 13 (2000) 1-7.
    • (2000) Appl. Math. Lett. , vol.13 , pp. 1-7
    • Avery, R.I.1    Henderson, J.2
  • 7
    • 85031203824 scopus 로고    scopus 로고
    • A remark on some three-point boundary value problems for the one-dimensional p-Laplacian
    • in press
    • X.-M. He, W.-G. Ge, A remark on some three-point boundary value problems for the one-dimensional p-Laplacian, ZAMM, in press.
    • ZAMM
    • He, X.-M.1    Ge, W.-G.2
  • 8
    • 23044520154 scopus 로고    scopus 로고
    • Multiple symmetric positive solutions for a second order boundary value problem
    • J. Henderson, H.B. Thompson, Multiple symmetric positive solutions for a second order boundary value problem, Proc. Amer. Math. Soc. 128 (2000) 2373-2379.
    • (2000) Proc. Amer. Math. Soc. , vol.128 , pp. 2373-2379
    • Henderson, J.1    Thompson, H.B.2
  • 9
    • 0000394603 scopus 로고
    • Multiple positive fixed points of nonlinear operators on ordered Banach spaces
    • R.W. Leggett, L.R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J. 28 (1979) 673-688.
    • (1979) Indiana Univ. Math. J. , vol.28 , pp. 673-688
    • Leggett, R.W.1    Williams, L.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.