메뉴 건너뛰기




Volumn 47, Issue 6, 2004, Pages 662-672

Extended k-nearest neighbours based on evidence theory

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; MATHEMATICAL MODELS; OPTIMIZATION; PROBABILITY DENSITY FUNCTION;

EID: 8644282861     PISSN: 00104620     EISSN: None     Source Type: Journal    
DOI: 10.1093/comjnl/47.6.662     Document Type: Article
Times cited : (24)

References (36)
  • 2
    • 0036786963 scopus 로고    scopus 로고
    • Approximating the combination of belief functions using the fast mö bius transform in a coarsened frame
    • Denoeux, T. and Yaghlane, A. B. (2002) Approximating the combination of belief functions using the fast möbius transform in a coarsened frame. Int. J. Approx. Reason., 31, 77-101.
    • (2002) Int. J. Approx. Reason. , vol.31 , pp. 77-101
    • Denoeux, T.1    Yaghlane, A.B.2
  • 3
    • 0029307876 scopus 로고
    • A k-nearest neighbor classification rule based on Dempster-Shafer theory
    • Denoeux, T. (1995) A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans. Syst. Man Cybernet., 25, 804-813.
    • (1995) IEEE Trans. Syst. Man Cybernet. , vol.25 , pp. 804-813
    • Denoeux, T.1
  • 4
    • 0001099497 scopus 로고    scopus 로고
    • The transferable belief model for quantified belief representation
    • Gabbay, D. M. and Smets, P. (eds), Kluwer, Dordrecht, The Netherlands
    • Smets, P. (1998) The transferable belief model for quantified belief representation. In Gabbay, D. M. and Smets, P. (eds), Handbook of Defeasible Reasoning and Uncertainty Management Systems, Vol. 1, pp. 267-301. Kluwer, Dordrecht, The Netherlands.
    • (1998) Handbook of Defeasible Reasoning and Uncertainty Management Systems , vol.1 , pp. 267-301
    • Smets, P.1
  • 5
    • 0028406490 scopus 로고
    • The transferable belief model
    • Smets, P. and Kennes, R. (1994) The transferable belief model. Artif. Intell., 66, 191-234.
    • (1994) Artif. Intell. , vol.66 , pp. 191-234
    • Smets, P.1    Kennes, R.2
  • 6
    • 0032072012 scopus 로고    scopus 로고
    • An evidence-theoretic k-NN rule with parameter optimization
    • Zouhal, L. M. and Denoeux, T. (1998) An evidence-theoretic k-NN rule with parameter optimization. IEEE Trans. Syst. Man Cybernet., 28, 263-271.
    • (1998) IEEE Trans. Syst. Man Cybernet. , vol.28 , pp. 263-271
    • Zouhal, L.M.1    Denoeux, T.2
  • 7
    • 0010529967 scopus 로고    scopus 로고
    • Algorithms for dempster-shafer theory
    • Gabbay, D. M. and Smets, P. (eds), Kluwer Academic Publishers, Boston, MA
    • Wilson, N. (2000) Algorithms for Dempster-Shafer theory. In Gabbay, D. M. and Smets, P. (eds), Handbook of Defeasible Reasoning and Uncertainty Management, pp. 421-475. Kluwer Academic Publishers, Boston, MA.
    • (2000) Handbook of Defeasible Reasoning and Uncertainty Management , pp. 421-475
    • Wilson, N.1
  • 8
    • 0031206656 scopus 로고    scopus 로고
    • Approximation algorithms and decision making in the Dempster-Shafer theory of evidence - an empirical study
    • Bauer, M. (1997) Approximation algorithms and decision making in the Dempster-Shafer theory of evidence - an empirical study. Int. J. Approx. Reason., 17, 217-237.
    • (1997) Int. J. Approx. Reason. , vol.17 , pp. 217-237
    • Bauer, M.1
  • 9
    • 0001127944 scopus 로고    scopus 로고
    • Inner and outer approximation of belief structures using a hierarchical clustering approach
    • Denoeux, T. (2001) Inner and outer approximation of belief structures using a hierarchical clustering approach. Int. J. Uncertain. Fuzz. Knowl.-based Syst., 9, 437-460.
    • (2001) Int. J. Uncertain. Fuzz. Knowl.-based Syst. , vol.9 , pp. 437-460
    • Denoeux, T.1
  • 10
    • 0000742109 scopus 로고    scopus 로고
    • Faithful approximations of belief functions
    • Laskey, K. B. and Prade, H. (eds), Stockholm, Sweden, Morgan Kaufmann
    • Harmanec, D. (1999) Faithful approximations of belief functions. In Laskey, K. B. and Prade, H. (eds), Uncertainty in Artificial Intelligence 15 (UAI99), Stockholm, Sweden, pp. 271-278, Morgan Kaufmann.
    • (1999) Uncertainty in Artificial Intelligence 15 (UAI99) , pp. 271-278
    • Harmanec, D.1
  • 11
    • 85168891634 scopus 로고
    • A framework for evidential reasoning systems
    • Kehler, T. et al. (eds), Philadelphia, August, AAAI Press
    • Lowrance, J. D., Garvey, T. D. and Strat, T. M. (1986) A framework for evidential reasoning systems. In Kehler, T. et al. (eds), Proc. AAAI86, Vol. 2, Philadelphia, August, pp. 896-903. AAAI Press.
    • (1986) Proc. AAAI86 , vol.2 , pp. 896-903
    • Lowrance, J.D.1    Garvey, T.D.2    Strat, T.M.3
  • 12
    • 0027609211 scopus 로고
    • Approximations for efficient computation in the theory of evidence
    • Tessem, B. (1993) Approximations for efficient computation in the theory of evidence. Artif. Intell., 61, 315-329.
    • (1993) Artif. Intell. , vol.61 , pp. 315-329
    • Tessem, B.1
  • 14
    • 84926662675 scopus 로고
    • Nearest neighbour pattern classification
    • IT-13
    • Cover, T. M. and Hart, P. E. (1967) Nearest neighbour pattern classification. IEEE Trans. Inform. Theory, IT-13, 21-27.
    • (1967) IEEE Trans. Inform. Theory , pp. 21-27
    • Cover, T.M.1    Hart, P.E.2
  • 15
    • 0016939390 scopus 로고
    • The distance-weighted k-nearest-neighbor rule
    • Dudani, S. A. (1976) The distance-weighted k-nearest-neighbor rule. IEEE Trans. Syst. Man Cybernet., 6, 325-327.
    • (1976) IEEE Trans. Syst. Man Cybernet. , vol.6 , pp. 325-327
    • Dudani, S.A.1
  • 16
    • 0017957910 scopus 로고
    • A note on distance-weighted k-nearest neighbor rules
    • Baily, T. and Jain, A. K. (1978) A note on distance-weighted k-nearest neighbor rules. IEEE Trans. Syst. Man Cybernet., 8, 311-313.
    • (1978) IEEE Trans. Syst. Man Cybernet. , vol.8 , pp. 311-313
    • Baily, T.1    Jain, A.K.2
  • 17
    • 0019394007 scopus 로고
    • A reappraisal of distance-weighted k-nearest neighbor classification for pattern recognition with missing data
    • Morin, R. L. and Raeside, D. E. (1981) A reappraisal of distance-weighted k-nearest neighbor classification for pattern recognition with missing data. IEEE Trans. Syst. Man Cybernet., 11, 241-243.
    • (1981) IEEE Trans. Syst. Man Cybernet. , vol.11 , pp. 241-243
    • Morin, R.L.1    Raeside, D.E.2
  • 20
    • 8644279491 scopus 로고    scopus 로고
    • The combination of text classifiers using reliability indicators
    • Technical Report, Microsoft. To appear in
    • Bennett, P., Dumais, S. and Horvitz, E. (2003) The Combination of Text Classifiers using Reliability Indicators. Technical Report, Microsoft. To appear in Information Retrieval. http://research.microsoft.com/~horvitz/tclass_combine.htm.
    • (2003) Information Retrieval
    • Bennett, P.1    Dumais, S.2    Horvitz, E.3
  • 21
    • 0026860706 scopus 로고
    • Methods of combining multiple classifiers and their applications to handwriting recognition
    • Xu, L., Krzyzak, A and Suen, C. (1992) Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Trans. Syst. Man Cybernet., 22, 418-435.
    • (1992) IEEE Trans. Syst. Man Cybernet. , vol.22 , pp. 418-435
    • Xu, L.1    Krzyzak, A.2    Suen, C.3
  • 25
    • 0030392357 scopus 로고    scopus 로고
    • Combining classifiers in text categorization
    • Frei, H.-P., Harman, D., Schäuble, P. and Wilkinson, R. (eds), Zürich, CH, ACM Press, New York
    • Larkey, L. S. and Croft, W. B. (1996) Combining classifiers in text categorization. In Frei, H.-P., Harman, D., Schäuble, P. and Wilkinson, R. (eds), Proc. SIGIR-96, 19th ACM Int. Conf. on Research and Development in Information Retrieval, Zürich, CH, pp. 289-297. ACM Press, New York.
    • (1996) Proc. SIGIR-96, 19th ACM Int. Conf. on Research and Development in Information Retrieval , pp. 289-297
    • Larkey, L.S.1    Croft, W.B.2
  • 27
    • 0003012849 scopus 로고    scopus 로고
    • Combining multiple learning strategies for effective cross-validation
    • Langley, P. (ed.), Stanford, CA, Morgan Kaufmann Publishers, San Francisco
    • Yang, Y., Ault, T. and Pierce, T. (2000) Combining multiple learning strategies for effective cross-validation. In Langley, P. (ed.), Proc. of ICML-00, 17th Int. Conf. on Machine Learning, Stanford, CA, pp. 1167-1182. Morgan Kaufmann Publishers, San Francisco.
    • (2000) Proc. of ICML-00, 17th Int. Conf. on Machine Learning , pp. 1167-1182
    • Yang, Y.1    Ault, T.2    Pierce, T.3
  • 28
    • 0032274556 scopus 로고    scopus 로고
    • Classification of text documents
    • Li, Y. and Jain, A. (1998) Classification of text documents. Comput. J., 41, 537-546.
    • (1998) Comput. J. , vol.41 , pp. 537-546
    • Li, Y.1    Jain, A.2
  • 29
    • 0034796806 scopus 로고    scopus 로고
    • A meta-learning approach for text categorization
    • Croft, W. B., Harper, D. J., Kraft, D., H. and Zobel, J. (eds), New Orleans, LA, ACM Press, New York
    • Lam, W. and Lai, K. (2001) A meta-learning approach for text categorization. In Croft, W. B., Harper, D. J., Kraft, D., H. and Zobel, J. (eds), Proc. SIGIR01, 24th ACM Int. Conf. on Research and Development in Information Retrieval, New Orleans, LA, pp. 303-309. ACM Press, New York.
    • (2001) Proc. SIGIR01, 24th ACM Int. Conf. on Research and Development in Information Retrieval , pp. 303-309
    • Lam, W.1    Lai, K.2
  • 30
    • 0025434991 scopus 로고
    • The combination of evidence in the transferable belief model
    • Smets, P. (1990) The combination of evidence in the transferable belief model. IEEE Trans. Pattern Anal. Mach. Intell., 12, 447-458.
    • (1990) IEEE Trans. Pattern Anal. Mach. Intell. , vol.12 , pp. 447-458
    • Smets, P.1
  • 31
    • 0023211620 scopus 로고
    • A re-examination of the distance weighted k-nearest neighbor classification rule
    • Macleod, J. E., Luk, A. and Titterington, D. M. (1987) A re-examination of the distance weighted k-nearest neighbor classification rule. IEEE Trans. Syst. Man Cybernet., 17, 689-696.
    • (1987) IEEE Trans. Syst. Man Cybernet. , vol.17 , pp. 689-696
    • Macleod, J.E.1    Luk, A.2    Titterington, D.M.3
  • 35
    • 8644258270 scopus 로고    scopus 로고
    • Poll: What data mining techniques you use regularly?
    • Piatetsky-Shapiro, G. (2003) Poll: what data mining techniques you use regularly? http://www.kdnuggets.com/news/2003/n22/li.html.
    • (2003)
    • Piatetsky-Shapiro, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.