메뉴 건너뛰기




Volumn 218, Issue 1, 2004, Pages 59-72

Probabilistic neural networks for validation of on-board jet engine data

Author keywords

Artificial intelligence; Gas turbine diagnostics; Probabilistic neural networks; Probabilistic pattern recognition; Sensor faults

Indexed keywords

BACKPROPAGATION; FUNCTIONS; KALMAN FILTERING; NEURAL NETWORKS; PATTERN RECOGNITION; PRESSURE EFFECTS; PROBABILITY DISTRIBUTIONS; SENSORS; TURBOMACHINERY;

EID: 8644224949     PISSN: 09544100     EISSN: None     Source Type: Journal    
DOI: 10.1177/095441000421800105     Document Type: Article
Times cited : (30)

References (25)
  • 1
    • 0031148143 scopus 로고    scopus 로고
    • Supervision, fault-detection and fault-diag-nosis methods - An introduction
    • Isermann, R. Supervision, fault-detection and fault-diag-nosis methods - an introduction. Control Engng Practice, 1997, 5(5), 639-652.
    • (1997) Control Engng Practice , vol.5 , Issue.5 , pp. 639-652
    • Isermann, R.1
  • 2
    • 0030383968 scopus 로고    scopus 로고
    • Fault detection for gas turbine sensors using I/O dynamic linear models - Methodology of fault code generation
    • Bettocchi, R., Spina, P. R. and Azzoni P. M. Fault detection for gas turbine sensors using I/O dynamic linear models - methodology of fault code generation. ASME paper 96-TA-2, 1996.
    • (1996) ASME Paper 96TA-2
    • Bettocchi, R.1    Spina, P.R.2    Azzoni, P.M.3
  • 3
    • 0029722377 scopus 로고    scopus 로고
    • Application of analytical redundancy to detection of sensor faults on a turbofan engine
    • Kelly, R. Application of analytical redundancy to detection of sensor faults on a turbofan engine. ASME paper 96-GT-3, 1996.
    • (1996) ASME Paper 96-GT-3
    • Kelly, R.1
  • 4
    • 0031652388 scopus 로고    scopus 로고
    • Fault detection and isolation based on dynamic observers applied to gas turbine control sensors
    • Simani, S., Spina, P., Beghelli, S., Bettocchi, R. and Fantuzzi, C. Fault detection and isolation based on dynamic observers applied to gas turbine control sensors. ASME paper 98-GT-158, 1998.
    • (1998) ASME Paper 98GT-158
    • Simani, S.1    Spina, P.2    Beghelli, S.3    Bettocchi, R.4    Fantuzzi, C.5
  • 5
    • 84928567782 scopus 로고    scopus 로고
    • A method for the diagnosis of gas turbine sensor faults in presence of measurement noise
    • Bettocchi, R. and Spina, P. R. A method for the diagnosis of gas turbine sensor faults in presence of measurement noise. ASME paper 99-GT-303, 1999.
    • (1999) ASME Paper 99GT-303
    • Bettocchi, R.1    Spina, P.R.2
  • 6
    • 0034723696 scopus 로고    scopus 로고
    • Innovation sequence application to aircraft sensor fault detection: Comparison of checking covariance matrix algorithms
    • Caliskan, F. and Hajiyev, C. Innovation sequence application to aircraft sensor fault detection: comparison of checking covariance matrix algorithms. ISA Trans., 2000, 39, 47-56.
    • (2000) ISA Trans. , vol.39 , pp. 47-56
    • Caliskan, F.1    Hajiyev, C.2
  • 7
  • 8
    • 0004890609 scopus 로고
    • Fault diagnosis of fleet engines using neural networks
    • Eustace, R. and Merrington, G. Fault diagnosis of fleet engines using neural networks. ISABE paper ISABE 95-7085, 1995.
    • (1995) ISABE Paper , vol.ISABE 95-7085
    • Eustace, R.1    Merrington, G.2
  • 9
    • 84955139427 scopus 로고    scopus 로고
    • The use of Kalman filter and neural network methodologies in gas turbine performance diagnostics: A comparative study
    • Volponi, A. J., de Pold, H., Ranjan, G. and Chen, D. The use of Kalman filter and neural network methodologies in gas turbine performance diagnostics: a comparative study. ASME paper 2000-GT-547, 2000.
    • (2000) ASME Paper 2000-GT-547
    • Volponi, A.J.1    De Pold, H.2    Ranjan, G.3    Chen, D.4
  • 10
    • 8644240724 scopus 로고    scopus 로고
    • An evaluation of engine faults diagnostics using artificial neural networks
    • Pong, J. L., Ming, C. Z., Tzu, C. H. and Jin, Z. An evaluation of engine faults diagnostics using artificial neural networks. ASME paper 2000-GT-29, 2000.
    • (2000) ASME Paper 2000-GT-29
    • Pong, J.L.1    Ming, C.Z.2    Tzu, C.H.3    Jin, Z.4
  • 12
    • 0142226215 scopus 로고    scopus 로고
    • A fault tolerant flight control system for sensor and actuator failures using neural networks
    • Pergamon Editions, (Pergamon Press, Oxford)
    • Napolitano, M., An, Y. and Seanor, B. A fault tolerant flight control system for sensor and actuator failures using neural networks. In Aircraft Design, Vol. 3, 2000, Pergamon Editions, pp. 103-128 (Pergamon Press, Oxford).
    • (2000) Aircraft Design , vol.3 , pp. 103-128
    • Napolitano, M.1    An, Y.2    Seanor, B.3
  • 13
    • 0013374582 scopus 로고    scopus 로고
    • Using neural networks for sensor validation
    • Prepared for the Cleveland, Ohio, NASA/TM-1998-208483
    • Mattern, D., Guo, T., Graham, R. and McCoy, W. Using neural networks for sensor validation. Prepared for the 34th Joint Propulsion Conference, Cleveland, Ohio, 1998, NASA/TM-1998-208483.
    • (1998) 34th Joint Propulsion Conference
    • Mattern, D.1    Guo, T.2    Graham, R.3    McCoy, W.4
  • 14
    • 8644252465 scopus 로고    scopus 로고
    • Neural networks for the detection of gas turbine sensor faults
    • Doke, R. and Singh, R. Neural networks for the detection of gas turbine sensor faults. ISABE paper ISABE 99-7255, 1999.
    • (1999) ISABE Paper , vol.ISABE 99-7255
    • Doke, R.1    Singh, R.2
  • 16
    • 84955156283 scopus 로고    scopus 로고
    • An investigation of artificial neural network (ANN) in quantitative fault diagnosis for turbofan engine
    • Bin, S., Jin, Z. and Shaoji, Z. An investigation of artificial neural network (ANN) in quantitative fault diagnosis for turbofan engine. ASME paper 2000-GT-32, 2000.
    • (2000) ASME Paper 2000-GT-32
    • Bin, S.1    Jin, Z.2    Shaoji, Z.3
  • 17
    • 58449132731 scopus 로고    scopus 로고
    • A parametric investigation of the diagnostic ability of probabilistic neural networks on turbofan engines
    • Romessis, C., Stamatis, A. and Mathioudakis, K. A parametric investigation of the diagnostic ability of probabilistic neural networks on turbofan engines. ASME paper 2001-GT-11, 2001.
    • (2001) ASME Paper 2001-GT-11
    • Romessis, C.1    Stamatis, A.2    Mathioudakis, K.3
  • 19
    • 0037002777 scopus 로고    scopus 로고
    • Setting up of a probabilistic neural network for sensor fault detection including operation with component faults
    • Romessis, C. and Mathioudakis, K. Setting up of a probabilistic neural network for sensor fault detection including operation with component faults. ASME paper 2002-GT-30030, 2002; also Trans. ASME, J. Engngfor Gas Turbines and Power, July 2003, 125, 634-641.
    • (2002) ASME Paper 2002-GT-30030
    • Romessis, C.1    Mathioudakis, K.2
  • 20
    • 8644229065 scopus 로고    scopus 로고
    • July
    • Romessis, C. and Mathioudakis, K. Setting up of a probabilistic neural network for sensor fault detection including operation with component faults. ASME paper 2002-GT-30030, 2002; also Trans. ASME, J. Engngfor Gas Turbines and Power, July 2003, 125, 634-641.
    • (2003) Trans. ASME, J. Engngfor Gas Turbines and Power , vol.125 , pp. 634-641
  • 22
    • 0028257588 scopus 로고
    • TEMPER - A gas path analysis tool for commercial jet engines
    • January
    • Doel, D. TEMPER - a gas path analysis tool for commercial jet engines. Trans. ASME. J. Engng for Gas Turbines and Power, January 1994, 116, 82-89.
    • (1994) Trans. ASME. J. Engng for Gas Turbines and Power , vol.116 , pp. 82-89
    • Doel, D.1
  • 23
    • 0003768974 scopus 로고    scopus 로고
    • OBIDICOTE Programme Work Package, 4 steady-state test cases for engine deterioration
    • Document DNS78608, May
    • Curnock, B. OBIDICOTE Programme Work Package, 4 steady-state test cases for engine deterioration. Rolls-Royce Report, Document DNS78608, May 2001.
    • (2001) Rolls-royce Report
    • Curnock, B.1
  • 24
    • 84865462185 scopus 로고    scopus 로고
    • Real time engine model implementation for adaptive control and performance monitoring of large civil turbofans
    • Stamatis, A., Mathioudakis, K., Ruiz, J. and Curnock, B. Real time engine model implementation for adaptive control and performance monitoring of large civil turbofans. ASME paper 2001-GT-362, 2001.
    • (2001) ASME Paper 2001-GT-362
    • Stamatis, A.1    Mathioudakis, K.2    Ruiz, J.3    Curnock, B.4
  • 25
    • 0036820592 scopus 로고    scopus 로고
    • Turbofan performance deterioration tracking using nonlinear models and optimization techniques
    • October
    • Mathioudakis, K., Kamboukos, Ph. and Stamatis, A. Turbofan performance deterioration tracking using nonlinear models and optimization techniques. Trans. ASME, J. Turbomachinery, October 2002, 124, 580-587.
    • (2002) Trans. ASME, J. Turbomachinery , vol.124 , pp. 580-587
    • Mathioudakis, K.1    Kamboukos, Ph.2    Stamatis, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.