메뉴 건너뛰기




Volumn , Issue , 2008, Pages 1513-1518

Learning and Inference with Constraints

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE;

EID: 85167395555     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (15)

References (19)
  • 1
    • 84858412595 scopus 로고    scopus 로고
    • Aggregation via Set Partitioning for Natural Language Generation
    • Barzilay, R., and Lapata, M. 2006. Aggregation via Set Partitioning for Natural Language Generation. In Proc. of HLT/NAACL.
    • (2006) Proc. of HLT/NAACL.
    • Barzilay, R.1    Lapata, M.2
  • 2
    • 57749120009 scopus 로고    scopus 로고
    • Guiding semi-supervision with constraint-driven learning
    • Chang, M.; Ratinov, L.; and Roth, D. 2007. Guiding semi-supervision with constraint-driven learning. In ACL.
    • (2007) ACL
    • Chang, M.1    Ratinov, L.2    Roth, D.3
  • 4
    • 85127836544 scopus 로고    scopus 로고
    • Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms
    • Collins, M. 2002. Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms. In Proc. of EMNLP.
    • (2002) Proc. of EMNLP.
    • Collins, M.1
  • 5
    • 29344463007 scopus 로고    scopus 로고
    • Mixtures of deterministic-probabilistic networks and their AND/OR search space
    • Arlington, Virginia, United States: AUAI Press
    • Dechter, R., and Mateescu, R. 2004. Mixtures of deterministic-probabilistic networks and their AND/OR search space. In Proceedings of AUAI, 120–129. Arlington, Virginia, United States: AUAI Press.
    • (2004) Proceedings of AUAI , pp. 120-129
    • Dechter, R.1    Mateescu, R.2
  • 6
    • 84859881704 scopus 로고    scopus 로고
    • Unsupervised learning of field segmentation models for information extraction
    • Grenager, T.; Klein, D.; and Manning, C. 2005. Unsupervised learning of field segmentation models for information extraction. In Proc. of ACL.
    • (2005) Proc. of ACL.
    • Grenager, T.1    Klein, D.2    Manning, C.3
  • 7
    • 80055034798 scopus 로고    scopus 로고
    • Generalized inference with multiple semantic role labeling systems (shared task paper)
    • Koomen, P.; Punyakanok, V.; Roth, D.; and Yih, W. 2005. Generalized inference with multiple semantic role labeling systems (shared task paper). In Proc. of the CoNLL.
    • (2005) Proc. of the CoNLL.
    • Koomen, P.1    Punyakanok, V.2    Roth, D.3    Yih, W.4
  • 8
    • 84862276326 scopus 로고    scopus 로고
    • Beyond the Pipeline: Discrete Optimization in NLP
    • Marciniak, T., and Strube, M. 2005. Beyond the Pipeline: Discrete Optimization in NLP. In Proc. of the CoNLL.
    • (2005) Proc. of the CoNLL.
    • Marciniak, T.1    Strube, M.2
  • 9
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • (/3)
    • Nigam, K.; McCallum, A.; Thrun, S.; and Mitchell, T. 2000. Text classification from labeled and unlabeled documents using EM. Machine Learning 39(2/3).
    • (2000) Machine Learning , vol.39 , Issue.2
    • Nigam, K.1    McCallum, A.2    Thrun, S.3    Mitchell, T.4
  • 10
    • 33645983416 scopus 로고    scopus 로고
    • The Proposition Bank: An Annotated Corpus of Semantic Roles
    • Palmer, M.; Gildea, D.; and Kingsbury, P. 2005. The Proposition Bank: An Annotated Corpus of Semantic Roles. Computational Linguistics 31(1):71–106.
    • (2005) Computational Linguistics , vol.31 , Issue.1 , pp. 71-106
    • Palmer, M.1    Gildea, D.2    Kingsbury, P.3
  • 11
    • 29244464687 scopus 로고    scopus 로고
    • Information extraction from research papers using conditional random fields
    • Peng, F., and McCallum, A. 2006. Information extraction from research papers using conditional random fields. Inf. Process. Manage. 42(4):963–979.
    • (2006) Inf. Process. Manage , vol.42 , Issue.4 , pp. 963-979
    • Peng, F.1    McCallum, A.2
  • 13
    • 84880754776 scopus 로고    scopus 로고
    • The Necessity of Syntactic Parsing for Semantic Role Labeling
    • Punyakanok, V.; Roth, D.; and Yih, W. 2005. The Necessity of Syntactic Parsing for Semantic Role Labeling. In Proc. of IJCAI.
    • (2005) Proc. of IJCAI.
    • Punyakanok, V.1    Roth, D.2    Yih, W.3
  • 14
    • 45749086553 scopus 로고    scopus 로고
    • The importance of syntactic parsing and inference in semantic role labeling
    • Punyakanok, V.; Roth, D.; and Yih, W. 2008. The importance of syntactic parsing and inference in semantic role labeling. Computational Linguistics 34(2).
    • (2008) Computational Linguistics , vol.34 , Issue.2
    • Punyakanok, V.1    Roth, D.2    Yih, W.3
  • 15
    • 47749138183 scopus 로고    scopus 로고
    • Modeling Discriminative Global Inference
    • IEEE
    • Rizzolo, N., and Roth, D. 2007. Modeling Discriminative Global Inference. In Proc. of the ICSC, 597–604. IEEE.
    • (2007) Proc. of the ICSC , pp. 597-604
    • Rizzolo, N.1    Roth, D.2
  • 16
    • 85093033694 scopus 로고    scopus 로고
    • A linear programming formulation for global inference in natural language tasks
    • Ng, H. T., and Riloff, E., eds., Association for Computational Linguistics
    • Roth, D., and Yih, W. 2004. A linear programming formulation for global inference in natural language tasks. In Ng, H. T., and Riloff, E., eds., Proc. of the Annual Conference on Computational Natural Language Learning (CoNLL), 1–8. Association for Computational Linguistics.
    • (2004) Proc. of the Annual Conference on Computational Natural Language Learning (CoNLL) , pp. 1-8
    • Roth, D.1    Yih, W.2
  • 17
    • 31844450331 scopus 로고    scopus 로고
    • Integer Linear Programming Inference for Conditional Random Fields
    • Roth, D., and Yih, W. 2005. Integer Linear Programming Inference for Conditional Random Fields. In Proc. of ICML.
    • (2005) Proc. of ICML.
    • Roth, D.1    Yih, W.2
  • 18
    • 37849051438 scopus 로고    scopus 로고
    • Global inference for entity and relation identification via a linear programming formulation
    • Getoor, L., and Taskar, B., eds., MIT Press
    • Roth, D., and Yih, W. 2007. Global inference for entity and relation identification via a linear programming formulation. In Getoor, L., and Taskar, B., eds., Introduction to Statistical Relational Learning. MIT Press.
    • (2007) Introduction to Statistical Relational Learning
    • Roth, D.1    Yih, W.2
  • 19
    • 84880673754 scopus 로고    scopus 로고
    • Learning in natural language
    • Roth, D. 1999. Learning in natural language. In Proc. of IJCAI.
    • (1999) Proc. of IJCAI.
    • Roth, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.