메뉴 건너뛰기




Volumn , Issue , 2011, Pages

High-dimensional regression with noisy and missing data: Provable guarantees with non-convexity

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CONVEX OPTIMIZATION;

EID: 85162468591     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (145)

References (22)
  • 2
    • 0005455937 scopus 로고
    • Multiplicative errors-in-variables models with applications to recent data released by the U.S. Department of Energy
    • J. T. Hwang. Multiplicative errors-in-variables models with applications to recent data released by the U.S. Department of Energy. Journal of the American Statistical Association, 81(395):pp. 680-688, 1986.
    • (1986) Journal of the American Statistical Association , vol.81 , Issue.395 , pp. 680-688
    • Hwang, J.T.1
  • 5
    • 33847369049 scopus 로고    scopus 로고
    • Covariate selection for linear errors-in-variables regression models
    • Q. Xu and J. You. Covariate selection for linear errors-in-variables regression models. Communications in Statistics - Theory and Methods, 36(2):375-386, 2007.
    • (2007) Communications in Statistics - Theory and Methods , vol.36 , Issue.2 , pp. 375-386
    • Xu, Q.1    You, J.2
  • 6
    • 84860621435 scopus 로고    scopus 로고
    • Missing values: Sparse inverse covariance estimation and an extension to sparse regression
    • N. Städler and P. Bühlmann. Missing values: Sparse inverse covariance estimation and an extension to sparse regression. Statistics and Computing, pages 1-17, 2010.
    • (2010) Statistics and Computing , pp. 1-17
    • Städler, N.1    Bühlmann, P.2
  • 7
    • 77957596337 scopus 로고    scopus 로고
    • Sparse recovery under matrix uncertainty
    • M. Rosenbaum and A. B. Tsybakov. Sparse recovery under matrix uncertainty. Annals of Statistics, 38:2620-2651, 2010.
    • (2010) Annals of Statistics , vol.38 , pp. 2620-2651
    • Rosenbaum, M.1    Tsybakov, A.B.2
  • 12
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of Lasso and Dantzig selector
    • P. J. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. Annals of Statistics, 37(4):1705-1732, 2009.
    • (2009) Annals of Statistics , vol.37 , Issue.4 , pp. 1705-1732
    • Bickel, P.J.1    Ritov, Y.2    Tsybakov, A.3
  • 13
    • 77955054299 scopus 로고    scopus 로고
    • On the conditions used to prove oracle results for the Lasso
    • S. van de Geer and P. Buhlmann. On the conditions used to prove oracle results for the Lasso. Electronic Journal of Statistics, 3:1360-1392, 2009.
    • (2009) Electronic Journal of Statistics , vol.3 , pp. 1360-1392
    • Van De Geer, S.1    Buhlmann, P.2
  • 17
    • 50949096321 scopus 로고    scopus 로고
    • The sparsity and bias of the Lasso selection in high-dimensional linear regression
    • C. H. Zhang and J. Huang. The sparsity and bias of the Lasso selection in high-dimensional linear regression. Annals of Statistics, 36(4):1567-1594, 2008.
    • (2008) Annals of Statistics , vol.36 , Issue.4 , pp. 1567-1594
    • Zhang, C.H.1    Huang, J.2
  • 18
    • 65349193793 scopus 로고    scopus 로고
    • Lasso-type recovery of sparse representations for high-dimensional data
    • N. Meinshausen and B. Yu. Lasso-type recovery of sparse representations for high-dimensional data. Annals of Statistics, 37(1):246-270, 2009.
    • (2009) Annals of Statistics , vol.37 , Issue.1 , pp. 246-270
    • Meinshausen, N.1    Yu, B.2
  • 20
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the Lasso
    • N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with the Lasso. Annals of Statistics, 34:1436-1462, 2006.
    • (2006) Annals of Statistics , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 21
    • 77956916683 scopus 로고    scopus 로고
    • High-dimensional inverse covariance matrix estimation via linear programming
    • August
    • M. Yuan. High-dimensional inverse covariance matrix estimation via linear programming. Journal of Machine Learning Research, 99:2261-2286, August 2010.
    • (2010) Journal of Machine Learning Research , vol.99 , pp. 2261-2286
    • Yuan, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.