-
1
-
-
33747163541
-
High-dimensional graphs and variable selection with the lasso
-
N. Meinshausen and P. Buhlmann. High-dimensional graphs and variable selection with the lasso. The Annals of Statistics, 34(3):1436-1462, 2006.
-
(2006)
The Annals of Statistics
, vol.34
, Issue.3
, pp. 1436-1462
-
-
Meinshausen, N.1
Buhlmann, P.2
-
2
-
-
66549116888
-
Partial correlation estimation by joint sparse regression models
-
J. Peng, P. Wang, N. Zhou, and J. Zhu. Partial correlation estimation by joint sparse regression models. Journal of the American Statistical Association, 104(486):735-746, 2009.
-
(2009)
Journal of the American Statistical Association
, vol.104
, Issue.486
, pp. 735-746
-
-
Peng, J.1
Wang, P.2
Zhou, N.3
Zhu, J.4
-
3
-
-
77951455815
-
High-dimensional Ising model selection using l1- regularized logistic regression
-
P. Ravikumar, M.J. Wainwright, and J. Lafferty. High-dimensional Ising model selection using l1- regularized logistic regression. Annals of Statistics, 38(3):1287-1319, 2010.
-
(2010)
Annals of Statistics
, vol.38
, Issue.3
, pp. 1287-1319
-
-
Ravikumar, P.1
Wainwright, M.J.2
Lafferty, J.3
-
4
-
-
66549109770
-
Estimation of sparse binary pairwise markov networks using pseudolikelihoods
-
H. Höfling and R. Tibshirani. Estimation of sparse binary pairwise markov networks using pseudolikelihoods. The Journal of Machine Learning Research, 10:883-906, 2009.
-
(2009)
The Journal of Machine Learning Research
, vol.10
, pp. 883-906
-
-
Höfling, H.1
Tibshirani, R.2
-
5
-
-
85161998279
-
Graph-valued regression
-
J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors
-
Han Liu, Xi Chen, John Lafferty, and Larry Wasserman. Graph-valued regression. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages 1423-1431. 2010.
-
(2010)
Advances in Neural Information Processing Systems
, vol.23
, pp. 1423-1431
-
-
Liu, H.1
Chen, X.2
Lafferty, J.3
Wasserman, L.4
-
6
-
-
51949118201
-
Structure learning in random fields for heart motion abnormality detection
-
M. Schmidt, K. Murphy, G. Fung, and R. Rosales. Structure learning in random fields for heart motion abnormality detection. In IEEE Conference on Computer Vision and Pattern Recognition, pages 1-8, 2008.
-
(2008)
IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-8
-
-
Schmidt, M.1
Murphy, K.2
Fung, G.3
Rosales, R.4
-
11
-
-
69949155103
-
The composite absolute penalties family for grouped and hierarchical variable selection
-
P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped and hierarchical variable selection. Annals of Statistics, 37(6A):3468-3497, 2009.
-
(2009)
Annals of Statistics
, vol.37
, Issue.6 A
, pp. 3468-3497
-
-
Zhao, P.1
Rocha, G.2
Yu, B.3
-
12
-
-
80053435559
-
Accelerated block-coordinate relaxation for regularized optimization
-
University of Wisconsin-Madison
-
S.J. Wright. Accelerated block-coordinate relaxation for regularized optimization. Technical report, Department of Computer Science, University of Wisconsin-Madison, 2010.
-
(2010)
Technical Report, Department of Computer Science
-
-
Wright, S.J.1
-
13
-
-
65749118363
-
Graphical models, exponential families, and variational inference
-
M.J. Wainwright and M.I. Jordan. Graphical models, exponential families, and variational inference. Foundations and TrendsR in Machine Learning, 1:1-305, 2008.
-
(2008)
Foundations and TrendsR in Machine Learning
, vol.1
, pp. 1-305
-
-
Wainwright, M.J.1
Jordan, M.I.2
-
14
-
-
1842816363
-
Smoothing Spline ANOVA for multivariate Bernoulli observations, with application to ophthalmology data
-
F. Gao, G. Wahba, R. Klein, and B. Klein. Smoothing Spline ANOVA for multivariate Bernoulli observations, with application to ophthalmology data. Journal of the American Statistical Association, 96(453):127, 2001.
-
(2001)
Journal of the American Statistical Association
, vol.96
, Issue.453
, pp. 127
-
-
Gao, F.1
Wahba, G.2
Klein, R.3
Klein, B.4
-
20
-
-
34547688865
-
An interior-point method for large-scale l1-regularized logistic regression
-
K. Koh, S.J. Kim, and S. Boyd. An interior-point method for large-scale l1-regularized logistic regression. Journal of Machine learning research, 8(8):1519-1555, 2007.
-
(2007)
Journal of Machine Learning Research
, vol.8
, Issue.8
, pp. 1519-1555
-
-
Koh, K.1
Kim, S.J.2
Boyd, S.3
|