-
1
-
-
0000501656
-
Information theory and an extension of the maximum likelihood principle
-
Hirotsugu Akaike. Information theory and an extension of the maximum likelihood principle. Second International Symposium on Information Theory, (2):267-281, 1973.
-
(1973)
Second International Symposium on Information Theory
, Issue.2
, pp. 267-281
-
-
Akaike, H.1
-
4
-
-
0001038826
-
Covariance selection
-
Arthur P. Dempster. Covariance selection. Biometrics, 28:157-175, 1972.
-
(1972)
Biometrics
, vol.28
, pp. 157-175
-
-
Dempster, A.P.1
-
7
-
-
45849134070
-
Sparse inverse covariance estimation with the graphical lasso
-
Jerome H. Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3):432-441, 2007.
-
(2007)
Biostatistics
, vol.9
, Issue.3
, pp. 432-441
-
-
Friedman, J.H.1
Hastie, T.2
Tibshirani, R.3
-
8
-
-
2442611856
-
Stability-based validation of clustering solutions
-
Tilman Lange, Volker Roth, Mikio L. Braun, and Joachim M. Buhmann. Stability-based validation of clustering solutions. Neural Computation, 16(6):1299-1323, 2004.
-
(2004)
Neural Computation
, vol.16
, Issue.6
, pp. 1299-1323
-
-
Lange, T.1
Roth, V.2
Braun, M.L.3
Buhmann, J.M.4
-
10
-
-
70450277253
-
The nonparanormal: Semiparametric estimation of high dimensional undirected graphs
-
Han Liu, John Lafferty, and J.Wainwright. The nonparanormal: Semiparametric estimation of high dimensional undirected graphs. Journal of Machine Learning Research, 10:2295-2328, 2009.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 2295-2328
-
-
Liu, H.1
Lafferty, J.2
Wainwright, J.3
-
11
-
-
33747163541
-
High dimensional graphs and variable selection with the Lasso
-
Nicolai Meinshausen and Peter Bühlmann. High dimensional graphs and variable selection with the Lasso. The Annals of Statistics, 34:1436-1462, 2006.
-
(2006)
The Annals of Statistics
, vol.34
, pp. 1436-1462
-
-
Meinshausen, N.1
Bühlmann, P.2
-
13
-
-
70350731110
-
Coexpression network based on natural variation in human gene expression reveals gene interactions and functions
-
November
-
Renuka R. Nayak, Michael Kearns, Richard S. Spielman, and Vivian G. Cheung. Coexpression network based on natural variation in human gene expression reveals gene interactions and functions. Genome Research, 19(11):1953-1962, November 2009.
-
(2009)
Genome Research
, vol.19
, Issue.11
, pp. 1953-1962
-
-
Nayak, R.R.1
Kearns, M.2
Spielman, R.S.3
Cheung, V.G.4
-
14
-
-
66549116888
-
Partial correlation estimation by joint sparse regression models
-
Jie Peng, Pei Wang, Nengfeng Zhou, and Ji Zhu. Partial correlation estimation by joint sparse regression models. Journal of the American Statistical Association, 104(486):735-746, 2009.
-
(2009)
Journal of the American Statistical Association
, vol.104
, Issue.486
, pp. 735-746
-
-
Peng, J.1
Wang, P.2
Zhou, N.3
Zhu, J.4
-
18
-
-
62349119614
-
Sparse permutation invariant covariance estimation
-
Adam J. Rothman, Peter J. Bickel, Elizaveta Levina, and Ji Zhu. Sparse permutation invariant covariance estimation. Electronic Journal of Statistics, 2:494-515, 2008.
-
(2008)
Electronic Journal of Statistics
, vol.2
, pp. 494-515
-
-
Rothman, A.J.1
Bickel, P.J.2
Levina, E.3
Zhu, J.4
-
19
-
-
0000120766
-
Estimating the dimension of a model
-
Gideon Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6:461-464, 1978.
-
(1978)
The Annals of Statistics
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
22
-
-
69049091975
-
High dimensional variable selection
-
January
-
Larry Wasserman and Kathryn Roeder. High dimensional variable selection. Annals of statistics, 37(5A):2178-2201, January 2009.
-
(2009)
Annals of Statistics
, vol.37
, Issue.5 A
, pp. 2178-2201
-
-
Wasserman, L.1
Roeder, K.2
-
24
-
-
33947115409
-
Model selection and estimation in the Gaussian graphical model
-
Ming Yuan and Yi Lin. Model selection and estimation in the Gaussian graphical model. Biometrika, 94(1):19-35, 2007.
-
(2007)
Biometrika
, vol.94
, Issue.1
, pp. 19-35
-
-
Yuan, M.1
Lin, Y.2
|