메뉴 건너뛰기




Volumn , Issue , 2010, Pages

Empirical risk minimization with approximations of probabilistic grammars

Author keywords

[No Author keywords available]

Indexed keywords

COMPOSITIONAL STRUCTURE; EMPIRICAL RISK MINIMIZATION; PROBABILISTIC GRAMMARS; SAMPLE COMPLEXITY BOUNDS; SEQUENTIAL STRUCTURE; STATISTIC MODELING; STRUCTURAL RISK MINIMIZATION;

EID: 85161986884     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (2)

References (22)
  • 1
  • 2
    • 0001841122 scopus 로고
    • On the computational complexity of approximating distributions by probabilistic automata
    • N. Abe and M. Warmuth. On the computational complexity of approximating distributions by probabilistic automata. Machine Learning, 2:205-260, 1992.
    • (1992) Machine Learning , vol.2 , pp. 205-260
    • Abe, N.1    Warmuth, M.2
  • 4
    • 84859885240 scopus 로고    scopus 로고
    • Coarse-to-fine n-best parsing and maxent discriminative reranking
    • E. Charniak and M. Johnson. Coarse-to-fine n-best parsing and maxent discriminative reranking. In Proc. of ACL, 2005.
    • (2005) Proc. of ACL
    • Charniak, E.1    Johnson, M.2
  • 5
    • 84859976571 scopus 로고    scopus 로고
    • Viterbi training for PCFGs: Hardness results and competitiveness of uniform initialization
    • S. B. Cohen and N. A. Smith. Viterbi training for PCFGs: Hardness results and competitiveness of uniform initialization. In Proceedings of ACL, 2010.
    • (2010) Proceedings of ACL
    • Cohen, S.B.1    Smith, N.A.2
  • 7
    • 4043082208 scopus 로고    scopus 로고
    • Head-driven statistical models for natural language processing
    • M. Collins. Head-driven statistical models for natural language processing. Computational Linguistics, 29:589-637, 2003.
    • (2003) Computational Linguistics , vol.29 , pp. 589-637
    • Collins, M.1
  • 9
    • 0031269467 scopus 로고    scopus 로고
    • The sample complexity of learning fixed-structure Bayesian networks
    • S. Dasgupta. The sample complexity of learning fixed-structure Bayesian networks. Machine Learning, 29(2-3):165-180, 1997.
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 165-180
    • Dasgupta, S.1
  • 10
    • 4043070633 scopus 로고    scopus 로고
    • Three new probabilistic models for dependency parsing: An exploration
    • J. Eisner. Three new probabilistic models for dependency parsing: An exploration. In Proc. of COLING, 1996.
    • (1996) Proc. of COLING
    • Eisner, J.1
  • 11
    • 49949150022 scopus 로고
    • Language identification in the limit
    • E. M. Gold. Language identification in the limit. Information and Control, 10(5):447-474, 1967.
    • (1967) Information and Control , vol.10 , Issue.5 , pp. 447-474
    • Gold, E.M.1
  • 13
    • 0002192516 scopus 로고
    • Decision-theoretic generalizations of the PAC model for neural net and other learning applications
    • D. Haussler. Decision-theoretic generalizations of the PAC model for neural net and other learning applications. Information and Computation, 100:78-150, 1992.
    • (1992) Information and Computation , vol.100 , pp. 78-150
    • Haussler, D.1
  • 14
    • 29344466697 scopus 로고    scopus 로고
    • Corpus-based induction of syntactic structure: Models of dependency and constituency
    • D. Klein and C. D. Manning. Corpus-based induction of syntactic structure: Models of dependency and constituency. In Proc. of ACL, 2004.
    • (2004) Proc. of ACL
    • Klein, D.1    Manning, C.D.2
  • 15
    • 33746194045 scopus 로고    scopus 로고
    • Local Rademacher complexities and oracle inequalities in risk minimization
    • V. Koltchinskii. Local Rademacher complexities and oracle inequalities in risk minimization. The Annals of Statistics, 34(6):2593-2656, 2006.
    • (2006) The Annals of Statistics , vol.34 , Issue.6 , pp. 2593-2656
    • Koltchinskii, V.1
  • 16
    • 62349137210 scopus 로고    scopus 로고
    • A stochastic graph grammar for compositional object representation and recognition
    • L. Lin, T. Wu, J. Porway, and Z. Xu. A stochastic graph grammar for compositional object representation and recognition. Pattern Recognition, 8, 2009.
    • (2009) Pattern Recognition , vol.8
    • Lin, L.1    Wu, T.2    Porway, J.3    Xu, Z.4
  • 17
    • 84858380058 scopus 로고    scopus 로고
    • Improved inference for unlexicalized parsing
    • S. Petrov and D. Klein. Improved inference for unlexicalized parsing. In Proc. of HLT-NAACL, 2007.
    • (2007) Proc. of HLT-NAACL
    • Petrov, S.1    Klein, D.2
  • 20
    • 3142725508 scopus 로고    scopus 로고
    • Optimal aggregation of classifiers in statistical learning
    • A. Tsybakov. Optimal aggregation of classifiers in statistical learning. The Annals of Statistics, 32(1):135-166, 2004.
    • (2004) The Annals of Statistics , vol.32 , Issue.1 , pp. 135-166
    • Tsybakov, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.