메뉴 건너뛰기




Volumn , Issue , 2010, Pages

Predicting execution time of computer programs using sparse polynomial regression

Author keywords

[No Author keywords available]

Indexed keywords

FEATURE EXTRACTION; POLYNOMIALS; REGRESSION ANALYSIS;

EID: 85161965875     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (139)

References (29)
  • 1
  • 2
    • 85162072889 scopus 로고    scopus 로고
    • Event Dataset. http://vision.stanford.edu/lijiali/event-dataset/.
    • Event Dataset
  • 3
    • 85162037380 scopus 로고    scopus 로고
    • ImageJ. http://rsbweb.nih.gov/ij/.
    • ImageJ.
  • 4
    • 85162013023 scopus 로고    scopus 로고
    • Mahout. lucene.apache.org/mahout
    • Mahout. lucene.apache.org/mahout.
  • 6
    • 70349656201 scopus 로고    scopus 로고
    • Link gradients: Predicting the impact of network latency on multitier applications
    • S. Chen, K. Joshi, M. A. Hiltunen, W. H. Sanders, and R. D. Schlichting. Link gradients: Predicting the impact of network latency on multitier applications. In INFOCOM, 2009.
    • (2009) INFOCOM
    • Chen, S.1    Joshi, K.2    Hiltunen, M.A.3    Sanders, W.H.4    Schlichting, R.D.5
  • 8
    • 85044970218 scopus 로고    scopus 로고
    • For most large underdetermined systems of equations, the minimal 1-norm solution is the sparsest solution
    • D. Donoho. For most large underdetermined systems of equations, the minimal 1-norm solution is the sparsest solution. Communications on Pure and Applied Mathematics, 59:797829, 2006.
    • (2006) Communications on Pure and Applied Mathematics , vol.59 , pp. 797829
    • Donoho, D.1
  • 10
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 2010.
    • (2010) Journal of Statistical Software , vol.33 , Issue.1
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 12
    • 37849052544 scopus 로고    scopus 로고
    • Measuring empirical computational complexity
    • S. Goldsmith, A. Aiken, and D. Wilkerson. Measuring empirical computational complexity. In FSE, 2007.
    • (2007) FSE
    • Goldsmith, S.1    Aiken, A.2    Wilkerson, D.3
  • 13
    • 51649089144 scopus 로고    scopus 로고
    • PQR: Predicting query execution times for autonomous workload management
    • C. Gupta, A. Mehta, and U. Dayal. PQR: Predicting query execution times for autonomous workload management. In ICAC, 2008.
    • (2008) ICAC
    • Gupta, C.1    Mehta, A.2    Dayal, U.3
  • 18
    • 84863337862 scopus 로고    scopus 로고
    • Nonparametric greedy algorithm for the sparse learning problems
    • H. Liu and X. Chen. Nonparametric greedy algorithm for the sparse learning problems. In NIPS 22, 2009.
    • (2009) NIPS , vol.22
    • Liu, H.1    Chen, X.2
  • 25
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani. Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc B., 1996.
    • (1996) J. Royal. Statist. Soc B.
    • Tibshirani, R.1
  • 26
    • 65749083666 scopus 로고    scopus 로고
    • Sharp thresholds for high-dimensional and noisy sparsity recovery using l1-constrained quadratic programming (Lasso
    • M. Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery using l1-constrained quadratic programming (Lasso). IEEE Trans. Information Theory, 55:2183-2202, 2009.
    • (2009) IEEE Trans. Information Theory , vol.55 , pp. 2183-2202
    • Wainwright, M.1
  • 27
    • 84863393425 scopus 로고    scopus 로고
    • Adaptive forward-backward greedy algorithm for sparse learning with linear models
    • T. Zhang. Adaptive forward-backward greedy algorithm for sparse learning with linear models. Advances in Neural Information Processing Systems, 22, 2008.
    • (2008) Advances in Neural Information Processing Systems , vol.22
    • Zhang, T.1
  • 29
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • H. Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101(476):1418-1429, 2006.
    • (2006) Journal of the American Statistical Association , vol.101 , Issue.476 , pp. 1418-1429
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.