-
1
-
-
84858893466
-
-
Caltech 101 Object Categories. http://www.vision.caltech.edu/Image- Datasets/Caltech101/Caltech101.html.
-
Caltech 101 Object Categories
-
-
-
2
-
-
85162072889
-
-
Event Dataset. http://vision.stanford.edu/lijiali/event-dataset/.
-
Event Dataset
-
-
-
3
-
-
85162037380
-
-
ImageJ. http://rsbweb.nih.gov/ij/.
-
ImageJ.
-
-
-
4
-
-
85162013023
-
-
Mahout. lucene.apache.org/mahout
-
Mahout. lucene.apache.org/mahout.
-
-
-
-
6
-
-
70349656201
-
Link gradients: Predicting the impact of network latency on multitier applications
-
S. Chen, K. Joshi, M. A. Hiltunen, W. H. Sanders, and R. D. Schlichting. Link gradients: Predicting the impact of network latency on multitier applications. In INFOCOM, 2009.
-
(2009)
INFOCOM
-
-
Chen, S.1
Joshi, K.2
Hiltunen, M.A.3
Sanders, W.H.4
Schlichting, R.D.5
-
7
-
-
84861039597
-
-
Technical Report. arXiv:1010.0019v1 [cs.PF]
-
B.-G. Chun, L. Huang, S. Lee, P.Maniatis, and M. Naik. Mantis: Predicting system performance through program analysis and modeling. Technical Report, 2010. arXiv:1010.0019v1 [cs.PF].
-
(2010)
Mantis: Predicting System Performance Through Program Analysis and Modeling
-
-
Chun, B.-G.1
Huang, L.2
Lee, S.3
Maniatis, P.4
Naik, M.5
-
8
-
-
85044970218
-
For most large underdetermined systems of equations, the minimal 1-norm solution is the sparsest solution
-
D. Donoho. For most large underdetermined systems of equations, the minimal 1-norm solution is the sparsest solution. Communications on Pure and Applied Mathematics, 59:797829, 2006.
-
(2006)
Communications on Pure and Applied Mathematics
, vol.59
, pp. 797829
-
-
Donoho, D.1
-
9
-
-
3242708140
-
Least angle regression
-
B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals of Statistics, 32(2):407-499, 2002.
-
(2002)
Annals of Statistics
, vol.32
, Issue.2
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
11
-
-
67649639298
-
Predicting multiple metrics for queries: Better decisions enabled by machine learning
-
A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. Jordan, and D. Patterson. Predicting multiple metrics for queries: Better decisions enabled by machine learning. In ICDE, 2009.
-
(2009)
ICDE
-
-
Ganapathi, A.1
Kuno, H.2
Dayal, U.3
Wiener, J.L.4
Fox, A.5
Jordan, M.6
Patterson, D.7
-
12
-
-
37849052544
-
Measuring empirical computational complexity
-
S. Goldsmith, A. Aiken, and D. Wilkerson. Measuring empirical computational complexity. In FSE, 2007.
-
(2007)
FSE
-
-
Goldsmith, S.1
Aiken, A.2
Wilkerson, D.3
-
13
-
-
51649089144
-
PQR: Predicting query execution times for autonomous workload management
-
C. Gupta, A. Mehta, and U. Dayal. PQR: Predicting query execution times for autonomous workload management. In ICAC, 2008.
-
(2008)
ICAC
-
-
Gupta, C.1
Mehta, A.2
Dayal, U.3
-
15
-
-
72249118633
-
Quincy: Fair scheduling for distributed computing clusters
-
M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Goldberg. Quincy: fair scheduling for distributed computing clusters. In Proceedings of SOSP'09, 2009.
-
(2009)
Proceedings of SOSP'09
-
-
Isard, M.1
Prabhakaran, V.2
Currey, J.3
Wieder, U.4
Talwar, K.5
Goldberg, A.6
-
16
-
-
39449109476
-
An interior-point method for large-scale l1-regularized least squares
-
S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. An interior-point method for large-scale l1-regularized least squares. IEEE Journal on Selected Topics in Signal Processing, 1(4):606-617, 2007.
-
(2007)
IEEE Journal on Selected Topics in Signal Processing
, vol.1
, Issue.4
, pp. 606-617
-
-
Kim, S.-J.1
Koh, K.2
Lustig, M.3
Boyd, S.4
Gorinevsky, D.5
-
17
-
-
85076740771
-
WebProphet: Automating performance prediction for web services
-
Z. Li,M. Zhang, Z. Zhu, Y. Chen, A. Greenberg, and Y.-M.Wang. WebProphet: Automating performance prediction for web services. In NSDI, 2010.
-
(2010)
NSDI
-
-
Li, Z.1
Zhang, M.2
Zhu, Z.3
Chen, Y.4
Greenberg, A.5
Wang, Y.-M.6
-
18
-
-
84863337862
-
Nonparametric greedy algorithm for the sparse learning problems
-
H. Liu and X. Chen. Nonparametric greedy algorithm for the sparse learning problems. In NIPS 22, 2009.
-
(2009)
NIPS
, vol.22
-
-
Liu, H.1
Chen, X.2
-
19
-
-
23044520947
-
On the lasso and its dual
-
M. Osborne, B. Presnell, and B. Turlach. On the lasso and its dual. Journal of Computational and Graphical Statistics, 9(2):319-337, 2000.
-
(2000)
Journal of Computational and Graphical Statistics
, vol.9
, Issue.2
, pp. 319-337
-
-
Osborne, M.1
Presnell, B.2
Turlach, B.3
-
20
-
-
70350092487
-
Sparse additive models
-
P. Ravikumar, J. Lafferty, H. Liu, and L. Wasserman. Sparse additive models. Journal of the Royal Statistical Society: Series B(Statistical Methodology), 71(5):1009-1030, 2009.
-
(2009)
Journal of the Royal Statistical Society: Series B(Statistical Methodology)
, vol.71
, Issue.5
, pp. 1009-1030
-
-
Ravikumar, P.1
Lafferty, J.2
Liu, H.3
Wasserman, L.4
-
21
-
-
84858788948
-
Nonparametric sparse hierarchical models describe v1 fmri responses to natural images
-
P. Ravikumar, V. Vu, B. Yu, T. Naselaris, K. Kay, J. Gallant, and C. Berkeley. Nonparametric sparse hierarchical models describe v1 fmri responses to natural images. Advances in Neural Information Processing Systems (NIPS), 21, 2008.
-
(2008)
Advances in Neural Information Processing Systems (NIPS)
, vol.21
-
-
Ravikumar, P.1
Vu, V.2
Yu, B.3
Naselaris, T.4
Kay, K.5
Gallant, J.6
Berkeley, C.7
-
24
-
-
79952039442
-
Answering what-if deployment and configuration questions with wise
-
M. Tariq, A. Zeitoun, V. Valancius, N. Feamster, and M. Ammar. Answering what-if deployment and configuration questions with wise. In ACM SIGCOMM, 2008.
-
(2008)
ACM SIGCOMM
-
-
Tariq, M.1
Zeitoun, A.2
Valancius, V.3
Feamster, N.4
Ammar, M.5
-
25
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
R. Tibshirani. Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc B., 1996.
-
(1996)
J. Royal. Statist. Soc B.
-
-
Tibshirani, R.1
-
26
-
-
65749083666
-
Sharp thresholds for high-dimensional and noisy sparsity recovery using l1-constrained quadratic programming (Lasso
-
M. Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery using l1-constrained quadratic programming (Lasso). IEEE Trans. Information Theory, 55:2183-2202, 2009.
-
(2009)
IEEE Trans. Information Theory
, vol.55
, pp. 2183-2202
-
-
Wainwright, M.1
-
27
-
-
84863393425
-
Adaptive forward-backward greedy algorithm for sparse learning with linear models
-
T. Zhang. Adaptive forward-backward greedy algorithm for sparse learning with linear models. Advances in Neural Information Processing Systems, 22, 2008.
-
(2008)
Advances in Neural Information Processing Systems
, vol.22
-
-
Zhang, T.1
-
29
-
-
33846114377
-
The adaptive lasso and its oracle properties
-
H. Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101(476):1418-1429, 2006.
-
(2006)
Journal of the American Statistical Association
, vol.101
, Issue.476
, pp. 1418-1429
-
-
Zou, H.1
|