-
2
-
-
0001482683
-
Asymptotic development by 0-convergence
-
G. ANZELLOTTI and S. BALDO, Asymptotic development by 0-convergence, Appl. Math. Optim. 27 (1993), 105-123.
-
(1993)
Appl. Math. Optim
, vol.27
, pp. 105-123
-
-
ANZELLOTTI, G.1
BALDO, S.2
-
3
-
-
38249034469
-
Elliptic equations with nearly critical growth
-
F. ATKINSON and L. PELETIER, Elliptic equations with nearly critical growth, J. Differential Equations 70 (1986), 349-365.
-
(1986)
J. Differential Equations
, vol.70
, pp. 349-365
-
-
ATKINSON, F.1
PELETIER, L.2
-
4
-
-
85148035571
-
Problèmes isopérimétriques et espaces de Sobolev, C. R. Acad. Sci. Paris 280 (1975), 279-282
-
J. Differential Geometry 11 (1976), 573-598
-
T. AUBIN, Problèmes isopérimétriques et espaces de Sobolev, C. R. Acad. Sci. Paris 280 (1975), 279-282, J. Differential Geometry 11 (1976), 573-598.
-
-
-
AUBIN, T.1
-
5
-
-
84859647866
-
On some critical problems for the fractional Laplacian operator
-
B. BARRIOS, E. COLORADO, A. DE PABLO and U. SÁNCHEZ, On some critical problems for the fractional Laplacian operator, J. Differential Equations 252 (2012), 6133-6162.
-
(2012)
J. Differential Equations
, vol.252
, pp. 6133-6162
-
-
BARRIOS, B.1
COLORADO, E.2
DE PABLO, A.3
SÁNCHEZ, U.4
-
7
-
-
0001581738
-
Asymptotic for Elliptic Equations involving critical growth
-
Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA
-
H. BREZIS and L. PELETIER, Asymptotic for Elliptic Equations involving critical growth, In: “Partial Differential Equations and the Calculus of Variations”, Vol. I, Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, 1989, 149-192.
-
(1989)
Partial Differential Equations and the Calculus of Variations
, vol.I
, pp. 149-192
-
-
BREZIS, H.1
PELETIER, L.2
-
8
-
-
84990613834
-
Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents
-
H. BREZIS and L. NIRENBERG, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.
-
(1983)
Comm. Pure Appl. Math
, vol.36
, pp. 437-477
-
-
BREZIS, H.1
NIRENBERG, L.2
-
10
-
-
33644613818
-
Classification of solutions for an integral equation
-
W. CHEN, C. LI and B. OU, Classification of solutions for an integral equation, Comm. Pure Appl. Math. 59 (2006), 330-343.
-
(2006)
Comm. Pure Appl. Math
, vol.59
, pp. 330-343
-
-
CHEN, W.1
LI, C.2
OU, B.3
-
11
-
-
3142718182
-
Best constants for Sobolev inequalities for higher order fractional derivatives
-
A. COTSIOLIS and N. K. TAVOULARIS, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl. 295 (2004), 225-236.
-
(2004)
J. Math. Anal. Appl
, vol.295
, pp. 225-236
-
-
COTSIOLIS, A.1
TAVOULARIS, N. K.2
-
13
-
-
84863469913
-
Hitchhiker's guide to the fractional Sobolev spaces
-
E. DI NEZZA, G. PALATUCCI and E. VALDINOCI, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521-573.
-
(2012)
Bull. Sci. Math
, vol.136
, pp. 521-573
-
-
NEZZA, E. DI1
PALATUCCI, G.2
VALDINOCI, E.3
-
14
-
-
84872735188
-
Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian
-
S. DIPIERRO, G. PALATUCCI and E. VALDINOCI, Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian, Matematiche 68 (2013), 201-216.
-
(2013)
Matematiche
, vol.68
, pp. 201-216
-
-
DIPIERRO, S.1
PALATUCCI, G.2
VALDINOCI, E.3
-
15
-
-
0001256961
-
Sharp constant in a Sobolev trace inequality
-
J. ESCOBAR, Sharp constant in a Sobolev trace inequality, Indiana Univ. Math. J. 37 (1988), 687-698.
-
(1988)
Indiana Univ. Math. J
, vol.37
, pp. 687-698
-
-
ESCOBAR, J.1
-
17
-
-
55549087886
-
Non-linear ground state representations and sharp Hardy inequalities
-
R. FRANK and R. SEIRINGER, Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal. 255 (2008), 3407-3430.
-
(2008)
J. Funct. Anal
, vol.255
, pp. 3407-3430
-
-
FRANK, R.1
SEIRINGER, R.2
-
18
-
-
0038398826
-
Concentration phenomena for the volume functional in unbounded domains: identification of concentration points
-
A. GARRONI, S. MÜLLER, Concentration phenomena for the volume functional in unbounded domains: identification of concentration points, J. Funct. Anal. 199 (2003), 386-410.
-
(2003)
J. Funct. Anal
, vol.199
, pp. 386-410
-
-
GARRONI, A.1
MÜLLER, S.2
-
19
-
-
84894034859
-
Fractional conformal Laplacians and fractional Yamabe problems
-
M. D. M. GONZALEZ and J. QING, Fractional conformal Laplacians and fractional Yamabe problems, Anal. Partial Differential Equations 6 (2013), 1535-1576.
-
(2013)
Anal. Partial Differential Equations
, vol.6
, pp. 1535-1576
-
-
GONZALEZ, M. D. M.1
QING, J.2
-
20
-
-
84903853123
-
Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent
-
Z.-C. HAN, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), 159-174.
-
(1991)
Ann. Inst. H. Poincaré Anal. Non Linéaire
, vol.8
, pp. 159-174
-
-
HAN, Z.-C.1
-
21
-
-
0001294182
-
The concentration-compactness principle in the calculus of variations. The limit case, part 1
-
P. L. LIONS, The concentration-compactness principle in the calculus of variations. The limit case, part 1, Rev. Mat. Iberoamericana 1 (1985), 145-201.
-
(1985)
Rev. Mat. Iberoamericana
, vol.1
, pp. 145-201
-
-
LIONS, P. L.1
-
22
-
-
0001294182
-
The concentration-compactness principle in the calculus of variations. The limit case, part 2
-
P. L. LIONS, The concentration-compactness principle in the calculus of variations. The limit case, part 2, Rev. Mat. Iberoamericana 1 (1985), 45-121.
-
(1985)
Rev. Mat. Iberoamericana
, vol.1
, pp. 45-121
-
-
LIONS, P. L.1
-
23
-
-
77955841626
-
Theory of Sobolev Multipliers. With Applications to Differential and Integral Operators
-
Springer-Verlag, Berlin
-
V. MAZ'YA, T. SHAPOSHNIKOVA, “Theory of Sobolev Multipliers. With Applications to Differential and Integral Operators”, Grundlehren der Mathematischen Wissenschaften, Vol. 337, Springer-Verlag, Berlin, 2009.
-
(2009)
Grundlehren der Mathematischen Wissenschaften
, vol.337
-
-
MAZ'YA, V.1
SHAPOSHNIKOVA, T.2
-
24
-
-
84856155192
-
Subcritical approximation of the Sobolev quotient and a related concentration result
-
G. PALATUCCI, Subcritical approximation of the Sobolev quotient and a related concentration result, Rend. Sem. Mat. Univ. Padova 125 (2011), 1-14.
-
(2011)
Rend. Sem. Mat. Univ. Padova
, vol.125
, pp. 1-14
-
-
PALATUCCI, G.1
-
25
-
-
79957856391
-
p-Laplacian problems with critical Sobolev exponent
-
G. PALATUCCI, p-Laplacian problems with critical Sobolev exponent, Asymptot. Anal. 73 (2011), 37-52.
-
(2011)
Asymptot. Anal
, vol.73
, pp. 37-52
-
-
PALATUCCI, G.1
-
26
-
-
84902345867
-
Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces
-
G. PALATUCCI and A. PISANTE, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equation 50 (2014), 799-829.
-
(2014)
Calc. Var. Partial Differential Equation
, vol.50
, pp. 799-829
-
-
PALATUCCI, G.1
PISANTE, A.2
-
27
-
-
84855181783
-
Local and global minimizers for a variational energy involving a fractional norm
-
G. PALATUCCI, O. SAVIN and E. VALDINOCI, Local and global minimizers for a variational energy involving a fractional norm, Ann. Mat. Pura Appl. 192 (2013), 673-718.
-
(2013)
Ann. Mat. Pura Appl
, vol.192
, pp. 673-718
-
-
PALATUCCI, G.1
SAVIN, O.2
VALDINOCI, E.3
-
28
-
-
0242467417
-
Boundary blow-up for a Brezis-Peletier problem on a singular domain
-
A. PISTOIA and O. REY, Boundary blow-up for a Brezis-Peletier problem on a singular domain, Calc. Var. Partial Differential Equations 18 (2003), 243-251.
-
(2003)
Calc. Var. Partial Differential Equations
, vol.18
, pp. 243-251
-
-
PISTOIA, A.1
REY, O.2
-
29
-
-
0002490825
-
Critical exponents and critical dimensions for polyharmonic operators
-
P. PUCCI and J. SERRIN, Critical exponents and critical dimensions for polyharmonic operators, J. Math. Pures Appl. 69 (1990), 55-83.
-
(1990)
J. Math. Pures Appl
, vol.69
, pp. 55-83
-
-
PUCCI, P.1
SERRIN, J.2
-
30
-
-
0002432857
-
Proof of the conjecture of H. Brezis and L. A. Peletier
-
O. REY, Proof of the conjecture of H. Brezis and L. A. Peletier, Manuscripta Math. 65 (1989), 19-37.
-
(1989)
Manuscripta Math
, vol.65
, pp. 19-37
-
-
REY, O.1
-
32
-
-
84924785657
-
The Brezis-Nirenberg result for the fractional Laplacian
-
R. SERVADEI, E. VALDINOCI, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc. 367 (2015), 67-102.
-
(2015)
Trans. Amer. Math. Soc
, vol.367
, pp. 67-102
-
-
SERVADEI, R.1
VALDINOCI, E.2
-
33
-
-
0012218950
-
The best Sobolev constant
-
C. SWANSON, The best Sobolev constant, Appl. Anal. 47 (1992), 227-239.
-
(1992)
Appl. Anal
, vol.47
, pp. 227-239
-
-
SWANSON, C.1
-
34
-
-
34250392866
-
Best constants in Sobolev inequality
-
G. TALENTI, Best constants in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353-372.
-
(1976)
Ann. Mat. Pura Appl. (4)
, vol.110
, pp. 353-372
-
-
TALENTI, G.1
-
35
-
-
79960461967
-
The Brezis-Nirenberg type problem involving the square root of the Laplacian
-
J. TAN, The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differential Equations 42 (2011), 21-41.
-
(2011)
Calc. Var. Partial Differential Equations
, vol.42
, pp. 21-41
-
-
TAN, J.1
|