-
2
-
-
38249034469
-
Elliptic equations with nearly critical growth
-
F. Atkinson and L. Peletier, Elliptic equations with nearly critical growth, J. Differential Equations 70 (1986), 349-365.
-
(1986)
J. Differential Equations
, vol.70
, pp. 349-365
-
-
Atkinson, F.1
Peletier, L.2
-
3
-
-
84972498579
-
Problèmes isopérimétriques et espaces de Sobolev
-
announced in: C. R. Acad. Sci. Paris 280 (1975), 279-282
-
T. Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geom. 11(4) (1976), 573-598; announced in: C. R. Acad. Sci. Paris 280 (1975), 279-282.
-
(1976)
J. Differential Geom.
, vol.11
, Issue.4
, pp. 573-598
-
-
Aubin, T.1
-
4
-
-
84990623267
-
On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of the topology of the domain
-
A. Bahri and J. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), 253-294.
-
(1988)
Comm. Pure Appl. Math.
, vol.41
, pp. 253-294
-
-
Bahri, A.1
Coron, J.2
-
5
-
-
84963015788
-
An integral inequality
-
G. Bliss, An integral inequality, J. London Math. Soc. 5 (1930), 40-46.
-
(1930)
J. London Math. Soc.
, vol.5
, pp. 40-46
-
-
Bliss, G.1
-
6
-
-
0001581738
-
Asymptotic for elliptic equations involving critical growth
-
Progr. Nonlinear Differential Equations Appl., Birkhäuser, Boston, MA
-
H. Brezis and L. Peletier, Asymptotic for elliptic equations involving critical growth, in: Partial Differential Equations and the Calculus of Variations, Vol. I, Progr. Nonlinear Differential Equations Appl., Birkhäuser, Boston, MA, 1989, pp. 149-192.
-
(1989)
Partial Differential Equations and the Calculus of Variations
, vol.1
, pp. 149-192
-
-
Brezis, H.1
Peletier, L.2
-
8
-
-
0003096268
-
(n+2)/(n-2) = 0 on a contractible domain
-
(n+2)/(n-2) = 0 on a contractible domain, J. Partial Differential Equations 2(4) (1989), 83-88.
-
(1989)
J. Partial Differential Equations
, vol.2
, Issue.4
, pp. 83-88
-
-
Ding, W.1
-
9
-
-
0036627787
-
Concentration of low energy extremals: Identification of concentration points
-
DOI 10.1007/s005260100112
-
M. Flucher, A. Garroni and S.Müller, Concentration of low energy extremals: Identification of concentration points, Calc. Var. Partial Differential Equations 14 (2002), 483-516. (Pubitemid 36170903)
-
(2002)
Calculus of Variations and Partial Differential Equations
, vol.14
, Issue.4
, pp. 483-516
-
-
Flucher, M.1
Garroni, A.2
Muller, S.3
-
11
-
-
67649640478
-
Γ-convergence for concentration problems
-
Springer, Berlin
-
A. Garroni, Γ-convergence for concentration problems, in: Topics on Concentration Phenomena and Problems with Multiple Scales, A. Braides and V. Chiadò Piat, eds, Lect. Notes Unione Mat. Ital., Vol. 2, Springer, Berlin, 2006, pp. 233-266.
-
(2006)
Topics on Concentration Phenomena and Problems with Multiple Scales, A. Braides and V. Chiadò Piat, eds, Lect. Notes Unione Mat. Ital
, vol.2
, pp. 233-266
-
-
Garroni, A.1
-
12
-
-
84903853123
-
Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent
-
Z.-C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. Henri Poincaré 8(2) (1991), 159-174.
-
(1991)
Ann. Inst. Henri Poincaré
, vol.8
, Issue.2
, pp. 159-174
-
-
Han, Z.-C.1
-
13
-
-
84980167932
-
Remarks on some quasilinear elliptic equations
-
J. Kazdan and F. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 38 (1975), 557-569.
-
(1975)
Comm. Pure Appl. Math.
, vol.38
, pp. 557-569
-
-
Kazdan, J.1
Warner, F.2
-
14
-
-
0001294182
-
The concentration-compactness principle in the calculus of variations. The limit case
-
P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Rev. Mat. Iberoamericana 1 (1985), 145-201.
-
(1985)
Rev. Mat. Iberoamericana
, vol.1
, pp. 145-201
-
-
L P.. Lions1
-
15
-
-
84856155192
-
Subcritical approximation of the Sobolev quotient and a related concentration result
-
to appear
-
G. Palatucci, Subcritical approximation of the Sobolev quotient and a related concentration result, Rend. Sem. Mat. Univ. Padova, to appear.
-
Rend. Sem. Mat. Univ. Padova
-
-
Palatucci, G.1
-
17
-
-
0242467417
-
Boundary blow-up for a Brezis-Peletier problem on a singular domain
-
DOI 10.1007/s00526-003-0197-x
-
A. Pistoia and O. Rey, Boundary blow-up for a Brezis-Peletier problem on a singular domain, Calc. Var. Partial Differential Equations 18(3) (2003), 243-251. (Pubitemid 37434190)
-
(2003)
Calculus of Variations and Partial Differential Equations
, vol.18
, Issue.3
, pp. 243-251
-
-
Pistoia, A.1
Rey, O.2
-
18
-
-
0000514956
-
Eigenfunctions of the equations Δu = λf(u)
-
S. Pohozaev, Eigenfunctions of the equations Δu = λf(u), Sov. Math. Dokl. 6 (1965), 1408-1411.
-
(1965)
Sov. Math. Dokl.
, vol.6
, pp. 1408-1411
-
-
Pohozaev, S.1
-
19
-
-
0002432857
-
Proof of the conjecture of H. Brezis and L.A. Peletier
-
O. Rey, Proof of the conjecture of H. Brezis and L.A. Peletier, Manuscripta Math. 65 (1989), 19-37.
-
(1989)
Manuscripta Math.
, vol.65
, pp. 19-37
-
-
Rey, O.1
-
20
-
-
0012057530
-
Minimum values for c in the Sobolev inequality ||φ||6
-
G. Rosen, Minimum values for c in the Sobolev inequality ||φ||6
-
(1971)
SIAM J. Appl. Math.
, vol.21
, pp. 30-32
-
-
Rosen, G.1
-
21
-
-
34250392866
-
Best constants in Sobolev inequality
-
G. Talenti, Best constants in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353-372.
-
(1976)
Ann. Mat. Pura Appl.
, vol.4
, Issue.110
, pp. 353-372
-
-
Talenti, G.1
|